C++前缀和算法的应用:最大化城市的最小供电站数目(二)

简介: C++前缀和算法的应用:最大化城市的最小供电站数目

3月旧代码

class Solution {
public:
long long maxPower(vector& stations, int r, int k) {
m_c = stations.size();
CalPower(stations, r);
long long left = *std::min_element(m_vPower.begin(),m_vPower.end());
long long right = left + k+1 ;
while (left + 1 < right)
{
long long iMid = (left + right) / 2;
if (Can(iMid,r,k))
{
left = iMid;
}
else
{
right = iMid;
}
}
return left;
}
void CalPower(vector stations,int r )
{
long long llCur = 0;
for (int i = 0; i < r; i++)
{
llCur += stations[i];
}
for (int i = 0; i < stations.size(); i++)
{
if (i + r < m_c)
{
llCur += stations[i + r];
}
if (i - r - 1 >= 0)
{
llCur -= stations[i - r - 1];
}
m_vPower.push_back(llCur);
}
}
bool Can( long long llMinPower, int r, int k)const
{
long long llAdd = 0;
vector vDiff(m_vPower.size());
for (int i = 0; i < m_vPower.size(); i++)
{
llAdd += vDiff[i];
const long long llNeedAdd = llMinPower - (m_vPower[i] + llAdd);
if (llNeedAdd <= 0 )
{
continue;
}
if (llNeedAdd > k )
{
return false;
}
const int iNewIndex = i + r + r + 1;
if (iNewIndex < m_c)
{
vDiff[iNewIndex] -= llNeedAdd;
}
llAdd += llNeedAdd;
k -= llNeedAdd;
}
return true;
}
vector m_vPower;
int m_c;
};

8月旧代码

class Solution {
public:
long long maxPower(vector& stations, int r, int k) {
m_c = stations.size();
CalPower(stations, r);
long long left = *std::min_element(m_vPower.begin(),m_vPower.end());
long long right = left + k+1 ;
while (left + 1 < right)
{
long long iMid = (left + right) / 2;
if (Can(iMid,r,k))
{
left = iMid;
}
else
{
right = iMid;
}
}
return left;
}
void CalPower(vector stations,int r )
{
long long llCur = 0;
for (int i = 0; i < r; i++)
{
llCur += stations[i];
}
for (int i = 0; i < stations.size(); i++)
{
if (i + r < m_c)
{
llCur += stations[i + r];
}
if (i - r - 1 >= 0)
{
llCur -= stations[i - r - 1];
}
m_vPower.push_back(llCur);
}
}
bool Can( long long llMinPower, int r, int k)const
{
long long llAdd = 0;
vector vDiff(m_vPower.size());
for (int i = 0; i < m_vPower.size(); i++)
{
llAdd += vDiff[i];
const long long llNeedAdd = llMinPower - (m_vPower[i] + llAdd);
if (llNeedAdd <= 0 )
{
continue;
}
if (llNeedAdd > k )
{
return false;
}
const int iNewIndex = i + r + r + 1;
if (iNewIndex < m_c)
{
vDiff[iNewIndex] -= llNeedAdd;
}
llAdd += llNeedAdd;
k -= llNeedAdd;
}
return true;
}
vector m_vPower;
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

充满正能量得对大家说
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
算法终将统治宇宙,而我们统治算法。《喜缺全书》

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开

发环境: VS2022 C++17

目录
打赏
0
1
1
0
36
分享
相关文章
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
MapReduce在实现PageRank算法中的应用
总结来说,在实现PageRank算法时使用MapReduce能够有效地进行大规模并行计算,并且具有良好的容错性和可扩展性。
117 76
企业员工数据泄露防范策略:基于 C++ 语言的布隆过滤器算法剖析[如何防止员工泄密]
企业运营过程中,防范员工泄密是信息安全领域的核心议题。员工泄密可能致使企业核心数据、商业机密等关键资产的流失,进而给企业造成严重损失。为应对这一挑战,借助恰当的数据结构与算法成为强化信息防护的有效路径。本文专注于 C++ 语言中的布隆过滤器算法,深入探究其在防范员工泄密场景中的应用。
21 8
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
19 3
从第十批算法备案通过名单中分析算法的属地占比、行业及应用情况
2025年3月12日,国家网信办公布第十批深度合成算法通过名单,共395款。主要分布在广东、北京、上海、浙江等地,占比超80%,涵盖智能对话、图像生成、文本生成等多行业。典型应用包括医疗、教育、金融等领域,如觅健医疗内容生成算法、匠邦AI智能生成合成算法等。服务角色以面向用户为主,技术趋势为多模态融合与垂直领域专业化。
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
从第九批深度合成备案通过公示名单分析算法备案属地、行业及应用领域占比
2024年12月20日,中央网信办公布第九批深度合成算法名单。分析显示,教育、智能对话、医疗健康和图像生成为核心应用领域。文本生成占比最高(57.56%),涵盖智能客服、法律咨询等;图像/视频生成次之(27.32%),应用于广告设计、影视制作等。北京、广东、浙江等地技术集中度高,多模态融合成未来重点。垂直行业如医疗、教育、金融加速引入AI,提升效率与用户体验。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等