C++二分查找算法的应用:将数据流变为多个不相交区间

简介: C++二分查找算法的应用:将数据流变为多个不相交区间

本文涉及的基础知识点

二分查找算法合集

题目

给你一个由非负整数 a1, a2, …, an 组成的数据流输入,请你将到目前为止看到的数字总结为不相交的区间列表。

实现 SummaryRanges 类:

SummaryRanges() 使用一个空数据流初始化对象。

void addNum(int val) 向数据流中加入整数 val 。

int[][] getIntervals() 以不相交区间 [starti, endi] 的列表形式返回对数据流中整数的总结。

示例:

输入:

[“SummaryRanges”, “addNum”, “getIntervals”, “addNum”, “getIntervals”, “addNum”, “getIntervals”, “addNum”, “getIntervals”, “addNum”, “getIntervals”]
[[], [1], [], [3], [], [7], [], [2], [], [6], []]

输出:

[null, null, [[1, 1]], null, [[1, 1], [3, 3]], null, [[1, 1], [3, 3], [7, 7]], null, [[1, 3], [7, 7]], null, [[1, 3], [6, 7]]]

解释:

SummaryRanges summaryRanges = new SummaryRanges();
summaryRanges.addNum(1); // arr = [1]
summaryRanges.getIntervals(); // 返回 [[1, 1]]
summaryRanges.addNum(3); // arr = [1, 3]
summaryRanges.getIntervals(); // 返回 [[1, 1], [3, 3]]
summaryRanges.addNum(7); // arr = [1, 3, 7]
summaryRanges.getIntervals(); // 返回 [[1, 1], [3, 3], [7, 7]]
summaryRanges.addNum(2); // arr = [1, 2, 3, 7]
summaryRanges.getIntervals(); // 返回 [[1, 3], [7, 7]]
summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]
summaryRanges.getIntervals(); // 返回 [[1, 3], [6, 7]]

参数范围

0 <= val <= 104

最多调用 addNum 方法 3 * 104 次。

最多调用getIntervals 100次。

分析

用有序映射记录左端点和右端点。首尾各插入元素,避免判断非法迭代期。

addNum

情况处理

情况 处理
已经存在包括value的区间 则什么都不干。
不存在和value相邻的区间 插入[value,value]
左边有相邻的区间 删除左邻,插入新区间[左邻居左端点,value]
右边有相邻的区间 删除右邻,插入新区间[value,右邻居右端点]
左有都有相邻的区间 删除左右邻,插入新区间[左邻居左端点,右邻居右端点]

情况二和五可以分成两种独立的情况。

情况判断

情况 判断方法
已经存在包括value的区间 存在区间左端点小于value,右端点大于等于value
左邻 从右向左第一个左端点小于value, 右端点是否等于value-1
右邻 从左向右第一个左端点大于value, 左端点是否等于value+1

判断方法

判断右邻用: ij …upper_bound

判断左邻用ij前面的迭代期。

代码

核心代码

class SummaryRanges {
public:
SummaryRanges() {
m_mLeftRight[-1000 * 1000] = -1000 * 1000;
m_mLeftRight[1000*1000] = 1000 * 1000;
}
void addNum(int value) {
const auto ij = m_mLeftRight.upper_bound(value);
const auto it = std::prev(ij);
if (it->second >= value)
{//已经存在包括value的区间
return;
}
int left = value, right = value;
if (it->second + 1 == value)
{
left = it->first;
m_mLeftRight.erase(it);
}
if (value + 1 == ij->first)
{
right = ij->second;
m_mLeftRight.erase(ij);
}
m_mLeftRight[left] = right;
}
vector<vector> getIntervals() {
vector<vector> vRet;
auto it = m_mLeftRight.begin();
for (++it; it != m_mLeftRight.end(); ++it)
{
vRet.emplace_back(vector{ it->first,it->second });
}
vRet.pop_back();
return vRet;
}
std::map<int, int> m_mLeftRight;
};

测试用例

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i] ,v2[i]);
}
}
int main()
{
SummaryRanges sr;
vector<vector> res;
res = sr.getIntervals();
Assert(res, vector<vector>{ });
sr.addNum(-1);
res = sr.getIntervals();
Assert(res, vector<vector>{ {-1, -1} });
sr.addNum(-2);
res = sr.getIntervals();
Assert(res, vector<vector>{ {-2, -1} });
sr.addNum(0);
res = sr.getIntervals();
Assert(res, vector<vector>{ {-2, 0} });
sr.addNum(2);
res = sr.getIntervals();
Assert(res, vector<vector>{ {-2, 0}, { 2,2 } });
sr.addNum(1);
res = sr.getIntervals();
Assert(res, vector<vector<int>>{ {-2,2 } });
//CConsole::Out(res);

}

3月旧代码

class SummaryRanges {
public:
SummaryRanges() {
}
void addNum(int value) {
if (m_setHas.count(value))
{
return;
}
m_setHas.insert(value);
auto itEnd = m_mEndBegin.find(value - 1);
auto itBegin = m_mBeginEnd.find(value + 1);
if ((m_mEndBegin.end() != itEnd) && (m_mBeginEnd.end() != itBegin))
{
const int iOldBegin = itEnd->second;
const int iOldEnd = itBegin->second;
Erase(iOldBegin, value - 1);
Erase(value + 1, iOldEnd);
Insert(iOldBegin, iOldEnd);
}
else if (m_mEndBegin.end() != itEnd)
{
const int iOldBegin = itEnd->second;
Erase(iOldBegin, value - 1);
Insert(iOldBegin, value);
}
else if(m_mBeginEnd.end() != itBegin)
{
const int iOldEnd = itBegin->second;
Erase(value + 1, iOldEnd);
Insert(value, iOldEnd);
}
else
{
Insert(value, value);
}
}
vector<vector> getIntervals() {
vector<vector> vRet;
for (const auto& it : m_mBeginEnd)
{
vRet.push_back({ it.first, it.second });
}
return vRet;
}
protected:
void Erase(int iBegin, int iEnd)
{
m_mBeginEnd.erase(iBegin);
m_mEndBegin.erase(iEnd);
}
void Insert(int iBegin, int iEnd)
{
m_mBeginEnd[iBegin] = iEnd;
m_mEndBegin[iEnd] = iBegin;
}
std::map<int, int> m_mBeginEnd;
std::unordered_map<int, int> m_mEndBegin;
std::unordered_set m_setHas;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

充满正能量得对大家说
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
算法终将统治宇宙,而我们统治算法。《喜缺全书》

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开

发环境: VS2022 C++17


相关文章
|
2月前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
95 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
1月前
|
负载均衡 算法 安全
探秘:基于 C++ 的局域网电脑控制软件自适应指令分发算法
在现代企业信息化架构中,局域网电脑控制软件如同“指挥官”,通过自适应指令分发算法动态调整指令发送节奏与数据量,确保不同性能的终端设备高效运行。基于C++语言,利用套接字实现稳定连接和线程同步管理,结合实时状态反馈,优化指令分发策略,提升整体管控效率,保障网络稳定,助力数字化办公。
52 19
|
1月前
|
编译器 数据安全/隐私保护 C++
【C++面向对象——继承与派生】派生类的应用(头歌实践教学平台习题)【合集】
本实验旨在学习类的继承关系、不同继承方式下的访问控制及利用虚基类解决二义性问题。主要内容包括: 1. **类的继承关系基础概念**:介绍继承的定义及声明派生类的语法。 2. **不同继承方式下对基类成员的访问控制**:详细说明`public`、`private`和`protected`继承方式对基类成员的访问权限影响。 3. **利用虚基类解决二义性问题**:解释多继承中可能出现的二义性及其解决方案——虚基类。 实验任务要求从`people`类派生出`student`、`teacher`、`graduate`和`TA`类,添加特定属性并测试这些类的功能。最终通过创建教师和助教实例,验证代码
50 5
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
49 2
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
1月前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
2月前
|
算法 安全 C++
用 C++ 算法控制员工上网的软件,关键逻辑是啥?来深度解读下
在企业信息化管理中,控制员工上网的软件成为保障网络秩序与提升办公效率的关键工具。该软件基于C++语言,融合红黑树、令牌桶和滑动窗口等算法,实现网址精准过滤、流量均衡分配及异常连接监测。通过高效的数据结构与算法设计,确保企业网络资源优化配置与安全防护升级,同时尊重员工权益,助力企业数字化发展。
65 4
|
2月前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
74 0
|
3月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
3月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
77 1