C++深度优先(DFS)算法的应用:收集所有金币可获得的最大积分

简介: C++深度优先(DFS)算法的应用:收集所有金币可获得的最大积分

涉及知识点

深度优化(DFS) 记忆化

题目

节点 0 处现有一棵由 n 个节点组成的无向树,节点编号从 0 到 n - 1 。给你一个长度为 n - 1 的二维 整数 数组 edges ,其中 edges[i] = [ai, bi] 表示在树上的节点 ai 和 bi 之间存在一条边。另给你一个下标从 0 开始、长度为 n 的数组 coins 和一个整数 k ,其中 coins[i] 表示节点 i 处的金币数量。

从根节点开始,你必须收集所有金币。要想收集节点上的金币,必须先收集该节点的祖先节点上的金币。

节点 i 上的金币可以用下述方法之一进行收集:

收集所有金币,得到共计 coins[i] - k 点积分。如果 coins[i] - k 是负数,你将会失去 abs(coins[i] - k) 点积分。

收集所有金币,得到共计 floor(coins[i] / 2) 点积分。如果采用这种方法,节点 i 子树中所有节点 j 的金币数 coins[j] 将会减少至 floor(coins[j] / 2) 。

返回收集 所有 树节点的金币之后可以获得的最大积分。

参数范围

n == coins.length

2 <= n <= 105

0 <= coins[i] <= 104

edges.length == n - 1

0 <= edges[i][0], edges[i][1] < n

0 <= k <= 104

分析

时间复杂度

O(节点数量), DFS调用的次数=节点数量*2(两种方式)*21(分割方式),当n无穷大时,2和21忽略。

核心原理

当有祖先节点现在方式二时,本节点金币会减半。由于最多有10000个金币,所以减半15次后就是0,所以减半15次以上,和减半15次结果一样。比赛时,时间紧急,所以弄了20次,避免考虑边界情况。

变量解释

m_vRet[m_iN];//m_vRet[0] 未减半各节点及子孙节点的分数 m_vRet[i] 减半i次后的最大分数

代码

核心代码

class CNeiBo2
{
public:
CNeiBo2(int n, bool bDirect, int iBase = 0):m_iN(n),m_bDirect(bDirect),m_iBase(iBase)
{
m_vNeiB.resize(n);
}
CNeiBo2(int n, vector<vector>& edges, bool bDirect,int iBase=0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
{
m_vNeiB.resize(n);
for (const auto& v : edges)
{
m_vNeiB[v[0]- iBase].emplace_back(v[1]- iBase);
if (!bDirect)
{
m_vNeiB[v[1]- iBase].emplace_back(v[0]- iBase);
}
}
}
inline void Add(int iNode1, int iNode2)
{
iNode1 -= m_iBase;
iNode2 -= m_iBase;
m_vNeiB[iNode1].emplace_back(iNode2);
if (!m_bDirect)
{
m_vNeiB[iNode2].emplace_back(iNode1);
}
}
const int m_iN;
const bool m_bDirect;
const int m_iBase;
vector<vector> m_vNeiB;
};
class Solution {
public:
int maximumPoints(vector<vector>& edges, vector& coins, int k) {
m_iK = k;
for (int i = 0; i < m_iN; i++)
{
m_vRet[i].assign(coins.size(),-1);
}
CNeiBo2 neiBo(coins.size(),edges, false);
dfs(0, -1, 0, neiBo, coins);
return m_vRet[0][0];
}
int dfs(int cur, const int parent, int split,const CNeiBo2& vNeiBo,const vector& coins)
{
if (split >= 20)
{
return 0;
}
int& iRet = m_vRet[split][cur];
if (-1 != iRet)
{
return iRet;
}
const int curCoin = coins[cur] / (1 << split);
int iType1 = curCoin - m_iK;
{
for (const auto& next : vNeiBo.m_vNeiB[cur])
{
if (parent == next)
{
continue;
}
iType1 += dfs(next, cur, split, vNeiBo, coins);
}
}
int iType2 = curCoin/2;
{
for (const auto& next : vNeiBo.m_vNeiB[cur])
{
if (parent == next)
{
continue;
}
iType2 += dfs(next, cur, split+1, vNeiBo, coins);
}
}
iRet = max(iType1, iType2);
return iRet;
}
int m_iK;
static const int m_iN = 20;
vector m_vRet[m_iN];//m_vRet[0] 未减半各节点及子孙节点的分数 m_vRet[i] 减半i次后的最大分数
};

测试用例

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}
template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
int main()
{
Solution slu;
vector<vector> edges;
vector coins;
int k;
int res;
edges = { {0,1},{1,2},{2,3} };
coins = { 10,10,3,3 };
k = 5;
res = slu.maximumPoints(edges, coins,k);
Assert(11, res);
edges = { {0,1},{0,2} };
coins = { 8,4,4 };
k = 0;
res = slu.maximumPoints(edges, coins, k);
Assert(16, res);
//CConsole::Out(res);

}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

充满正能量得对大家说
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 C++17


相关文章
|
26天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
73 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
7天前
|
负载均衡 算法 安全
探秘:基于 C++ 的局域网电脑控制软件自适应指令分发算法
在现代企业信息化架构中,局域网电脑控制软件如同“指挥官”,通过自适应指令分发算法动态调整指令发送节奏与数据量,确保不同性能的终端设备高效运行。基于C++语言,利用套接字实现稳定连接和线程同步管理,结合实时状态反馈,优化指令分发策略,提升整体管控效率,保障网络稳定,助力数字化办公。
44 19
|
12天前
|
编译器 数据安全/隐私保护 C++
【C++面向对象——继承与派生】派生类的应用(头歌实践教学平台习题)【合集】
本实验旨在学习类的继承关系、不同继承方式下的访问控制及利用虚基类解决二义性问题。主要内容包括: 1. **类的继承关系基础概念**:介绍继承的定义及声明派生类的语法。 2. **不同继承方式下对基类成员的访问控制**:详细说明`public`、`private`和`protected`继承方式对基类成员的访问权限影响。 3. **利用虚基类解决二义性问题**:解释多继承中可能出现的二义性及其解决方案——虚基类。 实验任务要求从`people`类派生出`student`、`teacher`、`graduate`和`TA`类,添加特定属性并测试这些类的功能。最终通过创建教师和助教实例,验证代码
37 5
|
12天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
37 2
|
20天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
18天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
25天前
|
算法 安全 C++
用 C++ 算法控制员工上网的软件,关键逻辑是啥?来深度解读下
在企业信息化管理中,控制员工上网的软件成为保障网络秩序与提升办公效率的关键工具。该软件基于C++语言,融合红黑树、令牌桶和滑动窗口等算法,实现网址精准过滤、流量均衡分配及异常连接监测。通过高效的数据结构与算法设计,确保企业网络资源优化配置与安全防护升级,同时尊重员工权益,助力企业数字化发展。
46 4
|
26天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
62 0
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
62 1