Python3语法总结-数据转换②

简介: Python3语法总结-数据转换②


Python3语法总结

二.Python数据类型转换

有时候我们,需要对数据内置的类型进行转换,数据类型的转换。

Python 数据类型转换可以分为两种:

  • 隐式类型转换 - 自动完成
  • 显式类型转换 - 需要使用类型函数来转换

隐式类型转换

Python 会自动将一宗数据类型转为另一种数据类型,不需要我们去干预

num1 = 123
num2 = 1.23
nums = num1 + num2 # Python自动转换完成,把int型转为float

显示类型转换

显示类型转换,就是用户将对象的数据类型转换为所需数据类型

// int()强制转换为整型
x = int(1)  #输出结果为1
y = int(1.8)#输出结果为1
z = int("2")#输出结果为2
// float()强制转换为浮点型
x = float(1)     # x 输出结果为 1.0
y = float(2.8)   # y 输出结果为 2.8
z = float("3")   # z 输出结果为 3.0
w = float("4.2") # w 输出结果为 4.2

4e6d7731048b4e57aa40d973002e5226.png

目录
相关文章
|
19天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
28天前
|
IDE 数据挖掘 开发工具
Python作为一种广受欢迎的高级编程语言,以其简洁的语法和强大的功能吸引了众多初学者和专业开发者
Python作为一种广受欢迎的高级编程语言,以其简洁的语法和强大的功能吸引了众多初学者和专业开发者
36 7
|
17天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
26天前
|
存储 索引 Python
Python 的基本语法
这些是 Python 的基本语法要素,掌握它们是学习和使用 Python 的基础。通过不断地实践和应用,你将能够更深入地理解和熟练运用这些语法知识,从而编写出高效、简洁的 Python 代码
56 5
|
1月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
45 3
|
29天前
|
存储 Python
Python编程入门:理解基础语法与编写简单程序
本文旨在为初学者提供一个关于如何开始使用Python编程语言的指南。我们将从安装Python环境开始,逐步介绍变量、数据类型、控制结构、函数和模块等基本概念。通过实例演示和练习,读者将学会如何编写简单的Python程序,并了解如何解决常见的编程问题。文章最后将提供一些资源,以供进一步学习和实践。
32 1
|
1月前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。
|
1月前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
28 1
|
1月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
1月前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
76 0
下一篇
DataWorks