面试官:Redis主从集群切换数据丢失问题如何应对?

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 一、数据丢失的情况异步复制同步丢失集群产生脑裂数据丢失

一、数据丢失的情况

  • 异步复制同步丢失
  • 集群产生脑裂数据丢失

1.异步复制丢失

对于Redis主节点与从节点之间的数据复制,是异步复制的,当客户端发送写请求给master节点的时候,客户端会返回OK,然后同步到各个slave节点中。

如果此时master还没来得及同步给slave节点时发生宕机,那么master内存中的数据会丢失;

要是master中开启持久化设置数据可不可以保证不丢失呢?答案是否定的。在master 发生宕机后,sentinel集群检测到master发生故障,重新选举新的master,如果旧的master在故障恢复后重启,那么此时它需要同步新master的数据,此时新的master的数据是空的(假设这段时间中没有数据写入)。那么旧master中的数据就会被刷新掉,此时数据还是会丢失。

2.集群产生脑裂

首先我们需要理解集群的脑裂现象,这就好比一个人有两个大脑,那么到底受谁来控制呢?在分布式集群中,分布式协作框架zookeeper很好地解决了这个问题,通过控制半数以上的机器来解决。

那么在Redis中,集群脑裂产生数据丢失的现象是怎么样的呢?

假设我们有一个redis集群,正常情况下client会向master发送请求,然后同步到salve,sentinel集群监控着集群,在集群发生故障时进行自动故障转移。

此时,由于某种原因,比如网络原因,集群出现了分区,master与slave节点之间断开了联系,sentinel监控到一段时间没有联系认为master故障,然后重新选举,将slave切换为新的master。

但是master可能并没有发生故障,只是网络产生分区,此时client仍然在旧的master上写数据,而新的master中没有数据,如果不及时发现问题进行处理可能旧的master中堆积大量数据。在发现问题之后,旧的master降为slave同步新的master数据,那么之前的数据被刷新掉,大量数据丢失。

在了解了上面的两种数据丢失场景后,我们如何保证数据可以不丢失呢?在分布式系统中,衡量一个系统的可用性,我们一般情况下会说4个9,5个9的系统达到了高可用(99.99%,99.999%,据说淘宝是5个9)。对于redis集群,我们不可能保证数据完全不丢失,只能做到使得尽量少的数据丢失。

二、如何保证尽量少的数据丢失?

在redis的配置文件中有两个参数我们可以设置:

min-slaves-to-write 1
min-slaves-max-lag 10

min-slaves-to-write默认情况下是0,min-slaves-max-lag默认情况下是10。

以上面配置为例,这两个参数表示至少有1个salve的与master的同步复制延迟不能超过10s,一旦所有的slave复制和同步的延迟达到了10s,那么此时master就不会接受任何请求。

我们可以减小min-slaves-max-lag参数的值,这样就可以避免在发生故障时大量的数据丢失,一旦发现延迟超过了该值就不会往master中写入数据。

那么对于client,我们可以采取降级措施,将数据暂时写入本地缓存和磁盘中,在一段时间后重新写入master来保证数据不丢失;也可以将数据写入kafka消息队列,隔一段时间去消费kafka中的数据。

通过上面两个参数的设置我们尽可能地减少数据的丢失,具体的值还需要在特定的环境下进行测试设置。

本文就是愿天堂没有BUG给大家分享的内容,大家有收获的话可以分享下,想学习更多的话可以到微信公众号里找我,我等你哦。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
3天前
|
缓存 NoSQL Redis
Redis原理—3.复制、哨兵和集群
详细介绍了Redis的复制原理、哨兵原理和集群原理。
|
1月前
|
存储 缓存 NoSQL
Redis 面试题
Redis 基础面试题
|
3月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
2月前
|
存储 NoSQL Redis
redis主从集群与分片集群的区别
主从集群通过主节点处理写操作并向从节点广播读操作,从节点处理读操作并复制主节点数据,优点在于提高读取性能、数据冗余及故障转移。分片集群则将数据分散存储于多节点,根据规则路由请求,优势在于横向扩展能力强,提升读写性能与存储容量,增强系统可用性和容错性。主从适用于简单场景,分片适合大规模高性能需求。
83 5
|
3月前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
3月前
|
存储 NoSQL 算法
面试官:Redis 大 key 多 key,你要怎么拆分?
本文介绍了在Redis中处理大key和多key的几种策略,包括将大value拆分成多个key-value对、对包含大量元素的数据结构进行分桶处理、通过Hash结构减少key数量,以及如何合理拆分大Bitmap或布隆过滤器以提高效率和减少内存占用。这些方法有助于优化Redis性能,特别是在数据量庞大的场景下。
面试官:Redis 大 key 多 key,你要怎么拆分?
|
3月前
|
存储 NoSQL Redis
Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList
String类型底层数据结构,List类型全面解析,ZSet底层数据结构;简单动态字符串SDS、压缩列表ZipList、哈希表、跳表SkipList、整数数组IntSet
|
19天前
|
缓存 NoSQL 中间件
Redis,分布式缓存演化之路
本文介绍了基于Redis的分布式缓存演化,探讨了分布式锁和缓存一致性问题及其解决方案。首先分析了本地缓存和分布式缓存的区别与优劣,接着深入讲解了分布式远程缓存带来的并发、缓存失效(穿透、雪崩、击穿)等问题及应对策略。文章还详细描述了如何使用Redis实现分布式锁,确保高并发场景下的数据一致性和系统稳定性。最后,通过双写模式和失效模式讨论了缓存一致性问题,并提出了多种解决方案,如引入Canal中间件等。希望这些内容能为读者在设计分布式缓存系统时提供有价值的参考。感谢您的阅读!
110 6
Redis,分布式缓存演化之路
|
2月前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
194 85
|
1月前
|
存储 缓存 NoSQL
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应