微服务框架 go-zero logx 日志组件剖析

简介: 微服务框架 go-zero logx 日志组件剖析

addTenant api 和 rpc 的实现

上一篇我们说到咱们还剩下 addTenant 功能还未实现,不知道有没有兄弟感兴趣去实验一波的,本篇文章进行简要补充

根据上一篇文章分析,其实我们只需要执行如下几步即可:

  1. 编写 tenant.api,提供外部 addTenant 的 http 接口
  • 编写 tenant.api

提供一个 POST http 的接口 /api/tenant/addtenant

type (
        AddTenantReq {
                Name string `json:"name"`
                Addr string `json:"addr"`
        }
        AddTenantRsp {
                Id string `json:"id"`
        }
)
service tenant {
        @handler addTenant
        post /api/tenant/addtenant(AddTenantReq) returns (AddTenantRsp)
  • goctl 生成api代码
goctl api go -api tenant.api  -dir .
  1. 修改 api 的配置和逻辑层,让 api 层去调用之前写好的rpc接口 即可

对于配置可以模仿上一篇文章 order.api 的配置进行修改,另外只需要调整 addTenant 的 logic 层即可

func (l *AddTenantLogic) AddTenant(req *types.AddTenantReq) (*types.AddTenantRsp, error) {
   // todo: add your logic here and delete this line
   rsp,err :=l.svcCtx.TenantRpc.AddTenant(l.ctx, &tenant.AddTenantReq{
      Name: req.Name,
      Addr: req.Addr,
   })
   if err !=nil{
      return nil,err
   }
   return &types.AddTenantRsp{Id: rsp.Id},nil
}

具体的代码案例可以访问地址:https://github.com/qingconglaixueit/my_test_Demo

下面我们来看是 go-zero 中 日志组件 logx 的剖析

logx 日志组件剖析

对于 logx 日志组件,分别从如下几个方面来聊一聊我的理解,如果描述有不当的地方,还请多加评论多加交流

  • Go-zero 中 logx 是如何使用的?
  • Logx 基本的数据结构
  • Logx 的默认接口实现
  • Logx 日志存储位置,以及自定义存储日志位置的实现
  • Logx 实现自定义接口的方式

Go-zero 中 logx 是如何使用的?

我们以之前的 demo ,关于 tenant 的 rpc 部分作为例子,追踪一下代码,是如何走到日志部分的逻辑的

可以看到在 tenant.go 的文件中,做的是服务的启动

zrpc.MustNewServer 实际上是调用 go-zero 的 zrpc 包 的 NewServer 函数,传入的参数是

  • c RpcServerConf , 我们 rpc 服务的配置,就是咱们项目中的 etc/tenant.yaml

今天不聊关于 RpcServerConf 的结构,咱们重点说说 logx

  • register internal.RegisterFn 注册服务的回调函数

NewServer 函数做了如下几件事情:

  • RpcServerConf 配置数据的有效性检查
  • 初始化 metrics 的 options
  • 设置服务名,注册 etcd 服务,服务名就是上述配置文件中的 Name 字段
  • c.SetUp() 启动整个服务

对于 logx 日志组件的启动就是在 c.SetUp() 中完成

Logx 基本的数据结构

继续看到 logx.SetUp() 中的具体实现 , 函数需要传入的数据结构是这样的 LogConf

type LogConf struct {
   ServiceName         string `json:",optional"`
   Mode                string `json:",default=console,options=[console,file,volume]"`
   Encoding            string `json:",default=json,options=[json,plain]"`
   TimeFormat          string `json:",optional"`
   Path                string `json:",default=logs"`
   Level               string `json:",default=info,options=[info,error,severe]"`
   Compress            bool   `json:",optional"`
   KeepDays            int    `json:",optional"`
   StackCooldownMillis int    `json:",default=100"`
}
  • ServiceName:设置服务名称,可选。在 volume 模式下,该名称用于生成日志文件。在 rest/zrpc 服务中,名称将被自动设置为 restzrpc 的名称。
  • Mode:输出日志的模式,默认是console
  • console 模式将日志写到 stdout/stderr
  • file 模式将日志写到 Path 指定目录的文件中
  • volume 模式在 docker 中使用,将日志写入挂载的卷中
  • Encoding: 指示如何对日志进行编码,默认是json
  • json模式以 json 格式写日志
  • plain模式用纯文本写日志,并带有终端颜色显示
  • TimeFormat:自定义时间格式,可选。默认是 2006-01-02T15:04:05.000Z07:00
  • Path:设置日志路径,默认为 logs
  • Level: 用于过滤日志的日志级别。默认为info
  • info,所有日志都被写入
  • error, info 的日志被丢弃
  • severe, infoerror 日志被丢弃,只有 severe 日志被写入
  • Compress: 是否压缩日志文件,只在 file 模式下工作
  • KeepDays:日志文件被保留多少天,在给定的天数之后,过期的文件将被自动删除。对 console 模式没有影响
  • StackCooldownMillis:多少毫秒后再次写入堆栈跟踪。用来避免堆栈跟踪日志过多

另外对于 SetUp 函数做了如下几件事:

  • 设定日志等级
  • 初始化时间格式
  • 根据编码方式初始化存储日志编码类型
  • 根据设定的模式来初始化 Writer 句柄

Logx 的默认接口实现

对于 logx 打印日志的具体接口定义在:logx 包的 logger.go 文件中

对于上述接口,根据需要传递的参数我们可以分为如下几类:

  • Error, Info, Slow: 将任何类型的信息写进日志,使用 fmt.Sprint(...) 来转换为 string
  • Errorf, Infof, Slowf: 将指定格式的信息写入日志
  • Errorv, Infov, Slowv: 将任何类型的信息写入日志,用 json marshal 编码
  • Errorw, Infow, Sloww: 写日志,并带上给定的 key:value 字段
  • WithContext:将给定的 ctx 注入日志信息,例如用于记录 trace-idspan-id
  • WithDuration: 将指定的时间写入日志信息中,字段名为 duration

例如接口名后缀带有 w 的,是需要咱们传入 key:value 的,例如传入的结构是这样的:

实际上我们可以看到在 logx 源码中,其实有很多文件都已经根据自己的使用情况去实现了上述 Logger 接口

举一个 traceLogger 的例子

实际上我们可以直接看到,我们之前实现的 GetTenantrpc方法

我们可以看到当调用了NewGetTenantLogic 方法之后,实际上是会调用 logx.WithContext(ctx) 初始化一个 traceLogger 的句柄

traceLogger 实现了上述 Logger 接口, 因此,当我们需要在 rpc 中打印日志的时候,我们可以这样来使用

这个时候,实际上是调用的 traceLogger 对应的实现代码

我们可以看到,打印出来的日志,是我们所期望的信息

此处的字段对应含义是这样的:

  • Timestamp

时间戳

  • Level

日志等级

  • Duration

时间间隔

  • Caller

日志调用者

  • Content

具体的日志信息

仔细查看上述日志,我们可以发现还有 trace 和 span 字段也打印出来了,但是 logEntry 为什么没有定义呢

咱们稍微追一下代码,不难看出,是 traceLogger 内部的 info 函数进行日志信息的拼接

Logx 自定义存储日志位置 和 实现自定义接口的方式

Logx 自定义存储日志位置 和 实现自定义接口的方式其实我在这里就不需要过多的解释了,简单说明一下实现手段就可以了,有必要的话咱们可以查看 go-zero 官方文档 https://go-zero.dev/cn/docs/component/logx/

自定义存储日志位置

对于咱们需要修改日志的输出位置,实际上我们可以仔细思考一下,对于日志的数据,go-zero 还是使用的 golangio包中的 Writer 接口

咱们只需要定义对象,去实现 Writer 接口 中的 Write(p []byte) (n int, err error) 方法就可以了

官网也给了我们例子,例如咱们实现输出的日志往 kafka 里面吐,我们就可以这样

实现自定义接口

实现自定义接口,咱们其实刚才看 traceLogger 的实现方式,我们就能领悟到, traceLogger 去实现 Logger 接口中的方法,并且加入自己自定义的逻辑,例如加上了 trace 和 span

那么对于我们自定义接口,其实也是非常容易的,照葫芦画瓢即可了

\

感谢阅读,欢迎交流,点个赞,关注一波 再走吧

欢迎点赞,关注,收藏

朋友们,你的支持和鼓励,是我坚持分享,提高质量的动力

好了,本次就到这里

技术是开放的,我们的心态,更应是开放的。拥抱变化,向阳而生,努力向前行。

我是阿兵云原生,欢迎点赞关注收藏,下次见~

可以进入地址进行体验和学习:https://xxetb.xet.tech/s/3lucCI

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
相关文章
|
4月前
|
监控 算法 NoSQL
Go 微服务限流与熔断最佳实践:滑动窗口、令牌桶与自适应阈值
🌟蒋星熠Jaxonic:Go微服务限流熔断实践者。分享基于滑动窗口、令牌桶与自适应阈值的智能防护体系,助力高并发系统稳定运行。
Go 微服务限流与熔断最佳实践:滑动窗口、令牌桶与自适应阈值
|
4月前
|
存储 监控 算法
防止员工泄密软件中文件访问日志管理的 Go 语言 B + 树算法
B+树凭借高效范围查询与稳定插入删除性能,为防止员工泄密软件提供高响应、可追溯的日志管理方案,显著提升海量文件操作日志的存储与检索效率。
148 2
|
11月前
|
安全 Java 数据安全/隐私保护
微服务——SpringBoot使用归纳——Spring Boot中集成 Shiro——Shiro 三大核心组件
本课程介绍如何在Spring Boot中集成Shiro框架,主要讲解Shiro的认证与授权功能。Shiro是一个简单易用的Java安全框架,用于认证、授权、加密和会话管理等。其核心组件包括Subject(认证主体)、SecurityManager(安全管理员)和Realm(域)。Subject负责身份认证,包含Principals(身份)和Credentials(凭证);SecurityManager是架构核心,协调内部组件运作;Realm则是连接Shiro与应用数据的桥梁,用于访问用户账户及权限信息。通过学习,您将掌握Shiro的基本原理及其在项目中的应用。
403 0
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
4303 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
7月前
高性能网络库设计之日志组件
高性能网络库设计之日志组件
218 2
|
XML JSON API
ServiceStack:不仅仅是一个高性能Web API和微服务框架,更是一站式解决方案——深入解析其多协议支持及简便开发流程,带您体验前所未有的.NET开发效率革命
【10月更文挑战第9天】ServiceStack 是一个高性能的 Web API 和微服务框架,支持 JSON、XML、CSV 等多种数据格式。它简化了 .NET 应用的开发流程,提供了直观的 RESTful 服务构建方式。ServiceStack 支持高并发请求和复杂业务逻辑,安装简单,通过 NuGet 包管理器即可快速集成。示例代码展示了如何创建一个返回当前日期的简单服务,包括定义请求和响应 DTO、实现服务逻辑、配置路由和宿主。ServiceStack 还支持 WebSocket、SignalR 等实时通信协议,具备自动验证、自动过滤器等丰富功能,适合快速搭建高性能、可扩展的服务端应用。
863 3
|
12月前
|
Shell Go 开发工具
【环境】Rocky8使用gvm配置Go多版本管理的微服务开发环境(go-zero)
通过本文的介绍,我们详细讲解了如何在Rocky8上使用gvm来管理多个Go版本,并配置go-zero框架的开发环境。通过gvm的灵活管理,开发者可以轻松切换不同的Go版本,以适应不同项目的需求。同时,go-zero框架的使用进一步提升了微服务开发的效率和质量。希望本文能帮助开发者构建高效的Go语言开发环境,提高项目开发的灵活性和稳定性。
376 63
|
9月前
|
人工智能 数据可视化 JavaScript
颠覆开发效率!国内首个微服务编排框架Juggle开源啦!
Juggle是国内首个开源的微服务编排框架,专注于解决企业微服务进程中接口重复开发、系统对接复杂等问题。它提供零代码、低代码和AI增强功能,通过可视化拖拽快速组装简单API为复杂接口,支持多协议、多语言脚本和流程多版本管理。相比国外框架如Conductor,Juggle更贴合国内需求,具备高效开发、企业级可靠性及信创适配等优势,助力企业实现敏捷创新与数字化转型。
颠覆开发效率!国内首个微服务编排框架Juggle开源啦!
|
11月前
|
存储 JSON Go
PHP 日志系统的最佳搭档:一个 Go 写的远程日志收集服务
为了不再 SSH 上去翻日志,我写了个 Go 小脚本,用来接收远程日志。PHP 负责记录日志,Go 负责存储和展示,按天存储、支持 API 访问、可远程管理,终于能第一时间知道项目炸了。
240 10
|
开发框架 运维 监控
Spring Boot中的日志框架选择
在Spring Boot开发中,日志管理至关重要。常见的日志框架有Logback、Log4j2、Java Util Logging和Slf4j。选择合适的日志框架需考虑性能、灵活性、社区支持及集成配置。本文以Logback为例,演示了如何记录不同级别的日志消息,并强调合理配置日志框架对提升系统可靠性和开发效率的重要性。
517 5