日常的开发工作中,map 这个数据结构相信大家并不陌生,在 golang 里面,当然也有 map 这种类型
关于 map 的使用,还是有蛮多注意事项的,如果不清楚,这些事项,关键时候可能会踩坑,我们一起来演练一下吧
1 使用 map 记得初始化
写一个 demo
- 定义一个 map[int]int 类型的变量 myMap , 不做初始化
- 我们可以读取 myMap 的值,默认为 零值
- 但是我们往没有初始化的 myMap 中写入值,程序就会 panic ,这里切记不要踩坑
func main(){ var myMap map[int]int fmt.Println("myMap[1] == ",myMap[1]) }
程序运行效果:
# go run main.go myMap[1] == 0
代码中加入写操作:
func main(){ var myMap map[int]int fmt.Println("myMap[1] == ",myMap[1]) myMap[1] = 10 fmt.Println("myMap[1] == ",myMap[1]) }
程序运行效果:
# go run main.go myMap[1] == 0 panic: assignment to entry in nil map goroutine 1 [running]: main.main() /home/admin/golang_study/later_learning/map_test/main.go:20 +0xf3 exit status 2
程序果然报 panic 了,我们实际工作中需要万分小心,对代码要有敬畏之心
2 map 的遍历是无序的
- 定义一个 map[int]int 类型的 map,并初始化 5 个数
func main() { myMap := map[int]int{ 1: 1, 2: 2, 3: 3, 4: 4, 5: 5} for k := range myMap { fmt.Println(myMap[k]) } }
程序运行效果:
# go run main.go 1 2 3 4 5 # go run main.go 5 1 2 3 4 # go run main.go 3 4 5 1 2
运行上述代码 3 次,3 次结果都不一样,当然,也有可能 3 次结果的顺序都是一样的
因为 GO 中的 map 是基于哈希表实现的,所以遍历的时候是无序的
若我们需要清空这个 map ,那么我们可以直接将对应的 map 变量置为 nil 即可,例如
myMap = nil
3 map 也可以是二维的
map 也是可以像数组一样是二维的,甚至是多维的都可以,主要是看我们的需求了
可是我们要注意,只是定义的时候类似二维数组,但是具体使用的时候还是有区别的
我们可以这样来操作二维数组
func main() { myMap := map[int]map[string]string{} myMap[0] = map[string]string{ "name":"xiaomotong", "hobby":"program", } fmt.Println(myMap) }
程序运行效果:
# go run main.go map[0:map[name:xiaomotong hobby:program]]
我们不可以这样来操作二维数组
func main() { myMap := map[int]map[string]string{} myMap[0]["name"] = "xiaomotong" myMap[0]["hobby"] = "program" fmt.Println(myMap) }
程序运行效果:
# go run main.go panic: assignment to entry in nil map goroutine 1 [running]: main.main() /home/admin/golang_study/later_learning/map_test/main.go:17 +0x7f exit status 2
原因很简单,程序报的 panic 日志已经说明了原因
是因为 myMap[0] 键 是 0 没问题,但是 值是 map[string]string 类型的,需要初始化才可以做写操作,这也是我们文章第一点所说到的
要是还是想按照上面这种写法来,那也很简单,加一句初始化就好了
func main() { myMap := map[int]map[string]string{} myMap[0] = map[string]string{} myMap[0]["name"] = "xiaomotong" myMap[0]["hobby"] = "program" fmt.Println(myMap) }
4 获取 map 的 key 最好使用这种方式
工作中,我们会存在需要获取一个 map 的所有 key 的方式,这个时候,我们一般是如何获取的呢,接触过反射的 xdm 肯定会说,这很简单呀,用反射一句话就搞定的事情,例如:
func main() { myMap := map[int]int{ 1: 1, 2: 2, 3: 3, 4: 4, 5: 5} myKey := reflect.ValueOf(myMap).MapKeys() for v :=range myKey{ fmt.Println(v) } }
运行程序go run main.go
,结果如下:
可是我们都知道,golang 中的 反射 reflect 确实写起来很简洁,但是效率真的非常低,我们平时使用最好还是使用下面这种方式
func main() { myMap := map[int]int{ 1: 1, 2: 2, 3: 3, 4: 4, 5: 5} myKey := make([]int,0,len(myMap)) for k :=range myMap{ myKey = append(myKey,myMap[k]) } fmt.Println(myKey) }
这种编码方式,提前已经设置好 myKey 切片的容量和 map 的长度一致,则后续向 myKey 追加 key 的时候,就不会出现需要切片扩容的情况
程序运行效果:
# go run main.go [2 3 4 5 1]
我们可以看到,拿出来的 key ,也不是有序的
5 map 是并发不安全的 ,sync.Map 才是安全的
最后咱们再来模拟一下和验证一下 golang 的 map 不是安全
模拟 map 不安全的 demo, 需要多开一些协程才能模拟到效果,实验了一下,我这边模拟开 5 万 个协程
type T struct { myMap map[int]int } func (t *T) getValue(key int) int { return t.myMap[key] } func (t *T) setValue(key int, value int) { t.myMap[key] = value } func main() { ty := T{myMap: map[int]int{}} wg := sync.WaitGroup{} wg.Add(50000) for i := 0; i < 50000; i++ { go func(i int) { ty.setValue(i, i) fmt.Printf("get key == %d, value == %d \n", i, ty.getValue(i)) wg.Done() }(i) } wg.Wait() fmt.Println("program over !!") }
运行程序变会报错如下信息:
# go run main.go fatal error: concurrent map writes ...
如果硬是要使用 map 的话, 也可以加上一把互斥锁就可以解决了
咱们只用修改上述的代码,结构体定义的位置,和 设置值的函数
type T struct { myMap map[int]int lock sync.RWMutex } func (t *T) setValue(key int, value int) { t.lock.Lock() defer t.lock.Unlock() t.myMap[key] = value }
为了检查方便,我们把程序输出的值打印到一个文件里面 go run main.go >> map.log
程序运行后,可以看到,真实打印的 key 对应数据,确实是有 5000 行,没毛病
通过以上例子,就可以明白 golang 中的 map,确实不是并发安全的,需要加锁,才能做到并发安全
golang 也给我们提供了并发安全的 map ,sync.Map
sync.Map 的实现机制,简单来说,是他自身自带锁,因此可以控制并发安全
好了,今天就到这里,语言是好语言,工具也是好工具,我们需要实际用起来才能发挥他们的价值,不用的话一切都是白瞎
欢迎点赞,关注,收藏
朋友们,你的支持和鼓励,是我坚持分享,提高质量的动力
好了,本次就到这里
技术是开放的,我们的心态,更应是开放的。拥抱变化,向阳而生,努力向前行。
我是阿兵云原生,欢迎点赞关注收藏,下次见~