【机器学习Python实战】logistic回归

简介: 【机器学习Python实战】logistic回归

基于梯度下降的logistic回归

sigmoid函数

由基础知识的文章我们知道,sigmoid函数长这样:

如何用python代码来实现它呢:

def Sigmoid(z):
    G_of_Z = float(1.0 / float((1.0 + math.exp(-1.0 * z))))
    return G_of_Z

假设函数

同样,对于逻辑回归的假设函数,我们也需要用python定义

对于这样一个复合函数,定义方式如下:

def Hypothesis(theta, x):
    z = 0
    for i in range(len(theta)):
        z += x[i] * theta[i]
    return Sigmoid(z)

代价函数

对于这样一个cost function,实现起来是有些难度的

其原理是利用的正规公式:

实现过程也是相当于这个公式的计算过程

CostHistory=[]
def Cost_Function(X, Y, theta, m):
    sumOfErrors = 0
    for i in range(m):
        xi = X[i]
        hi = Hypothesis(theta, xi)
        if Y[i] == 1:
            error = Y[i] * math.log(hi)
        elif Y[i] == 0:
            error = (1 - Y[i]) * math.log(1 - hi)
        sumOfErrors += error
        CostHistory.append(sumOfErrors)
    const = -1 / m
    J = const * sumOfErrors
    #print('cost is ', J)
    return CostHistory

梯度下降

【机器学习基础】一元线性回归(适合初学者的保姆级文章)

【机器学习基础】多元线性回归(适合初学者的保姆级文章)

在这两篇文章中已经讲过了梯度下降的一些基本概念,如果不清楚的可以到前面看一下

代码定义梯度下降的方式如下:

def Gradient_Descent(X, Y, theta, m, alpha):
    new_theta = []
    constant = alpha / m
    for j in range(len(theta)):
        CFDerivative = Cost_Function_Derivative(X, Y, theta, j, m, alpha)
        new_theta_value = theta[j] - CFDerivative
        new_theta.append(new_theta_value)
    return new_theta

每次迭代,通过学习率与微分的计算,得到新的θ \thetaθ

迭代的策略这里使用的是牛顿法逻辑回归的实现,使用梯度下降来更新参数,同时使用二分法来逼近最优解。

def newton(X, Y, alpha, theta, num_iters):
    m = len(Y)
    for x in range(num_iters):
        new_theta = Gradient_Descent(X, Y, theta, m, alpha)
        theta = new_theta
        if x % 100 == 0:
            Cost_Function(X, Y, theta, m)
            print('theta ', theta)
            print('cost is ', Cost_Function(X, Y, theta, m))
    Declare_Winner(theta)

代码实现

from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from numpy import loadtxt, where
from pylab import scatter, show, legend, xlabel, ylabel
import math
import numpy as np
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plt
# 这是Sigmoid激活函数,用于将任何实数映射到介于0和1之间的值。
def Sigmoid(z):
    G_of_Z = float(1.0 / float((1.0 + math.exp(-1.0 * z))))
    return G_of_Z
# 这是预测函数,输入参数是参数向量theta和输入向量x,返回预测的概率。
def Hypothesis(theta, x):
    z = 0
    for i in range(len(theta)):
        z += x[i] * theta[i]
    return Sigmoid(z)
# 这是代价函数,输入参数是训练数据集X、标签Y、参数向量theta和样本数m,返回当前参数下的代价函数值和历史误差记录。
CostHistory=[]
def Cost_Function(X, Y, theta, m):
    sumOfErrors = 0
    for i in range(m):
        xi = X[i]
        hi = Hypothesis(theta, xi)
        if Y[i] == 1:
            error = Y[i] * math.log(hi)
        elif Y[i] == 0:
            error = (1 - Y[i]) * math.log(1 - hi)
        sumOfErrors += error
        CostHistory.append(sumOfErrors)
    const = -1 / m
    J = const * sumOfErrors
    #print('cost is ', J)
    return CostHistory
# 这是代价函数对第j个参数的导数,用于计算梯度下降中的梯度。
def Cost_Function_Derivative(X, Y, theta, j, m, alpha):
    sumErrors = 0
    for i in range(m):
        xi = X[i]
        xij = xi[j]
        hi = Hypothesis(theta, X[i])
        error = (hi - Y[i]) * xij
        sumErrors += error
    m = len(Y)
    constant = float(alpha) / float(m)
    J = constant * sumErrors
    return J
# 这是梯度下降算法的实现,用于更新参数向量theta。
def Gradient_Descent(X, Y, theta, m, alpha):
    new_theta = []
    constant = alpha / m
    for j in range(len(theta)):
        CFDerivative = Cost_Function_Derivative(X, Y, theta, j, m, alpha)
        new_theta_value = theta[j] - CFDerivative
        new_theta.append(new_theta_value)
    return new_theta
# 这是牛顿法逻辑回归的实现,使用梯度下降来更新参数,同时使用二分法来逼近最优解。
def newton(X, Y, alpha, theta, num_iters):
    m = len(Y)
    for x in range(num_iters):
        new_theta = Gradient_Descent(X, Y, theta, m, alpha)
        theta = new_theta
        if x % 100 == 0:
            Cost_Function(X, Y, theta, m)
            print('theta ', theta)
            print('cost is ', Cost_Function(X, Y, theta, m))
    Declare_Winner(theta)
# 该函数主要用于确定训练好的逻辑回归模型(这里命名为clf)对测试集的预测结果,并返回一个赢家(预测准确率更高的模型)。
def Declare_Winner(theta):
    score = 0
    winner = ""
    scikit_score = clf.score(X_test, Y_test)
    length = len(X_test)
    for i in range(length):
        prediction = round(Hypothesis(X_test[i], theta))
        answer = Y_test[i]
        if prediction == answer:
            score += 1
    my_score = float(score) / float(length)
min_max_scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1))
x_input1, x_input2, Y = np.genfromtxt('dataset3.txt', unpack=True, delimiter=',')
print(x_input1.shape)
print(x_input2.shape)
print(Y.shape)
X = np.column_stack((x_input1, x_input2))
X = min_max_scaler.fit_transform(X)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33)
clf= LogisticRegression()
clf.fit(X_train, Y_train)
print('Acuraccy is: ', (clf.score(X_test, Y_test) * 100))
pos = where(Y == 1)
neg = where(Y == 0)
scatter(X[pos, 0], X[pos, 1], marker='o', c='b')
scatter(X[neg, 0], X[neg, 1], marker='x', c='g')
xlabel('score 1')
ylabel('score 2')
legend(['0', '1'])
initial_theta = [0, 0]
alpha = 0.01
iterations = 100
m = len(Y)
mycost=Cost_Function(X,Y,initial_theta,m)
mycost=np.asarray(mycost)
print(mycost.shape)
plt.figure()
plt.plot(range(iterations),mycost)
newton(X,Y,alpha,initial_theta,iterations)
# print("theta is: ",my_theta)
plt.show()

效果展示

首先是基于数据集做出的散点图,并标记出了正例和负例

对于该散点图,可以做出一条分割正负样本的直线

下面是程序的一些输出:

相关文章
|
20小时前
|
机器学习/深度学习 传感器 物联网
【Python机器学习专栏】机器学习在物联网(IoT)中的集成
【4月更文挑战第30天】本文探讨了机器学习在物联网(IoT)中的应用,包括数据收集预处理、实时分析决策和模型训练更新。机器学习被用于智能家居、工业自动化和健康监测等领域,例如预测居民行为以优化能源效率和设备维护。Python是支持物联网项目机器学习集成的重要工具,文中给出了一个使用`scikit-learn`预测温度的简单示例。尽管面临数据隐私、安全性和模型解释性等挑战,但物联网与机器学习的结合将持续推动各行业的创新和智能化。
|
21小时前
|
机器学习/深度学习 人工智能 算法
【Python 机器学习专栏】强化学习在游戏 AI 中的实践
【4月更文挑战第30天】强化学习在游戏AI中展现巨大潜力,通过与环境交互和奖励信号学习最优策略。适应性强,能自主探索,挖掘出惊人策略。应用包括策略、动作和竞速游戏,如AlphaGo。Python是实现强化学习的常用工具。尽管面临训练时间长和环境复杂性等挑战,但未来强化学习将与其他技术融合,推动游戏AI发展,创造更智能的游戏体验。
|
21小时前
|
机器学习/深度学习 传感器 自动驾驶
【Python机器学习专栏】深度学习在自动驾驶中的应用
【4月更文挑战第30天】本文探讨了深度学习在自动驾驶汽车中的应用及其对技术发展的推动。深度学习通过模拟神经网络处理数据,用于环境感知、决策规划和控制执行。在环境感知中,深度学习识别图像和雷达数据;在决策规划上,学习人类驾驶行为;在控制执行上,实现精确的车辆控制。尽管面临数据需求、可解释性和实时性挑战,但通过数据增强、规则集成和硬件加速等方法,深度学习将持续优化自动驾驶性能,并在安全性和可解释性上取得进步。
|
21小时前
|
机器学习/深度学习 自然语言处理 PyTorch
【Python 机器学习专栏】自然语言处理中的深度学习应用
【4月更文挑战第30天】本文探讨了深度学习在自然语言处理(NLP)中的应用,包括文本分类、情感分析和机器翻译等任务。深度学习的优势在于自动特征学习、强大的表达能力和处理大规模数据的能力。常见模型如RNN、LSTM、GRU、CNN和注意力机制在NLP中发挥作用。Python的TensorFlow、PyTorch、NLTK和SpaCy等工具支持NLP研究。然而,数据稀缺、模型解释性和计算资源需求高等挑战仍待解决。随着技术进步,未来深度学习将进一步推动NLP发展,实现更智能的语言交互。
|
21小时前
|
机器学习/深度学习 算法 Python
【Python机器学习专栏】文本分类的机器学习应用
【4月更文挑战第30天】文本分类是机器学习中的关键应用,涉及文本预处理、特征提取和模型训练等步骤。常见方法包括基于规则、关键词和机器学习(如朴素贝叶斯、SVM、深度学习)。Python中可使用scikit-learn进行文本分类,例如通过TF-IDF和朴素贝叶斯对新闻数据集进行处理。随着技术发展,未来将深入研究深度学习在文本分类中的应用及多模态数据的利用。
|
21小时前
|
机器学习/深度学习 算法 UED
【Python 机器学习专栏】A/B 测试在机器学习项目中的应用
【4月更文挑战第30天】A/B测试在数据驱动的机器学习项目中扮演关键角色,用于评估模型性能、算法改进和特征选择。通过定义目标、划分群组、实施处理、收集数据和分析结果,A/B测试能帮助优化模型和用户体验。Python提供工具如pandas和scipy.stats支持实验实施与分析。注意样本量、随机性、时间因素和多变量分析,确保测试有效性。A/B测试助力于持续改进机器学习项目,实现更好的成果。
|
21小时前
|
机器学习/深度学习 数据采集 前端开发
【Python机器学习专栏】模型泛化能力与交叉验证
【4月更文挑战第30天】本文探讨了机器学习中模型泛化能力的重要性,它是衡量模型对未知数据预测能力的关键。过拟合和欠拟合影响泛化能力,而交叉验证是评估和提升泛化能力的有效工具。通过K折交叉验证等方法,可以发现并优化模型,如调整参数、选择合适模型、数据预处理、特征选择和集成学习。Python中可利用scikit-learn的cross_val_score函数进行交叉验证。
|
2月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
|
27天前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
2月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
29 1