Flink教程(24)- Flink高级特性(File Sink)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink教程(24)- Flink高级特性(File Sink)

01 引言

在前面的博客,我们学习了FlinkStreaming File Sink了,有兴趣的同学可以参阅下:

本文主要讲解Flink的高级特性其中之一的 File Sink。

02 File Sink介绍

参考:https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/connectors/file_sink.html

新的 Data Sink API (Beta):

  • 之前发布的 Flink 版本中[1],已经支持了 source connector 工作在流批两种模式下,因此在 Flink 1.12 中,社区着重实现了统一的 Data Sink API(FLIP-143)。新的抽象引入了 write/commit 协议和一个更加模块化的接口。Sink 的实现者只需要定义 what 和 how:SinkWriter,用于写数据,并输出需要 commit 的内容(例如,committables);Committer 和 GlobalCommitter,封装了如何处理 committables。框架会负责 when 和 where:即在什么时间,以及在哪些机器或进程中 commit。

这种模块化的抽象允许为 BATCH 和 STREAMING 两种执行模式,实现不同的运行时策略,以达到仅使用一种 sink 实现,也可以使两种模式都可以高效执行。Flink 1.12 中,提供了统一的 FileSink connector,以替换现有的 StreamingFileSink connector (FLINK-19758)。其它的 connector 也将逐步迁移到新的接口。

Flink 1.12的 FileSink 为批处理和流式处理提供了一个统一的接收器,它将分区文件写入Flink文件系统抽象所支持的文件系统。这个文件系统连接器为批处理和流式处理提供了相同的保证,它是现有流式文件接收器的一种改进。

03 File Sink案例演示

/**
 * @author : YangLinWei
 * @createTime: 2022/3/9 9:15 上午
 */
public class FileSinkDemo {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.enableCheckpointing(TimeUnit.SECONDS.toMillis(10));
        env.setStateBackend(new FsStateBackend("file:///D:/ckp"));
        //2.source
        DataStreamSource<String> lines = env.socketTextStream("node1", 9999);
        //3.sink
        //设置sink的前缀和后缀
        //文件的头和文件扩展名
        //prefix-xxx-.txt
        OutputFileConfig config = OutputFileConfig
                .builder()
                .withPartPrefix("prefix")
                .withPartSuffix(".txt")
                .build();
        //设置sink的路径
        String outputPath = "hdfs://node1:8020/FlinkFileSink/parquet";
        final FileSink<String> sink = FileSink
                .forRowFormat(new Path(outputPath), new SimpleStringEncoder<String>("UTF-8"))
                .withBucketAssigner(new DateTimeBucketAssigner<>())
                .withRollingPolicy(
                        DefaultRollingPolicy.builder()
                                .withRolloverInterval(TimeUnit.MINUTES.toMillis(15))
                                .withInactivityInterval(TimeUnit.MINUTES.toMillis(5))
                                .withMaxPartSize(1024 * 1024 * 1024)
                                .build())
                .withOutputFileConfig(config)
                .build();
        lines.sinkTo(sink).setParallelism(1);
        env.execute();
    }
}

04 文末

本文主要讲解Flink的高级特性其中之一的File Sink,谢谢大家的阅读,本文完!

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2月前
|
SQL 大数据 API
大数据-118 - Flink DataSet 基本介绍 核心特性 创建、转换、输出等
大数据-118 - Flink DataSet 基本介绍 核心特性 创建、转换、输出等
73 0
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
204 0
|
2月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
200 0
|
4月前
|
SQL Java Apache
实时计算 Flink版操作报错合集之本地启动时,如何处理报错:The file STDOUT does not exist on the TaskExecutor
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
4月前
|
SQL 关系型数据库 测试技术
实时数仓 Hologres操作报错合集之执行Flink的sink操作时出现报错,是什么原因
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
4月前
|
资源调度 关系型数据库 MySQL
【Flink on YARN + CDC 3.0】神操作!看完这篇教程,你也能成为数据流处理高手!从零开始,一步步教会你在Flink on YARN模式下如何配置Debezium CDC 3.0,让你的数据库变更数据瞬间飞起来!
【8月更文挑战第15天】随着Apache Flink的普及,企业广泛采用Flink on YARN部署流处理应用,高效利用集群资源。变更数据捕获(CDC)工具在现代数据栈中至关重要,能实时捕捉数据库变化并转发给下游系统处理。本文以Flink on YARN为例,介绍如何在Debezium CDC 3.0中配置MySQL连接器,实现数据流处理。首先确保YARN上已部署Flink集群,接着安装Debezium MySQL连接器并配置Kafka Connect。最后,创建Flink任务消费变更事件并提交任务到Flink集群。通过这些步骤,可以构建出从数据库变更到实时处理的无缝数据管道。
395 2
|
4月前
|
存储 SQL Java
实时数仓 Hologres产品使用合集之如何使用Flink的sink连接
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1266 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
159 56