Chain-Of-Note:解决噪声数据、不相关文档和域外场景来改进RAG的表现

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: CoN框架由三种不同的类型组成,研究称之为阅读笔记。

CoN要点

CoN框架由三种不同的类型组成,研究称之为阅读笔记。

上面的图像,类型(A)显示了检索到的数据或文档回答查询的位置。LLM仅使用NLG从提供的数据中格式化答案。

类型(B)中,检索到的文档不直接回答查询,但是上下文洞察足以使LLM将检索到的文档与它自己的知识结合起来,从而推断出答案。

类型(C)是指检索到的文档是不相关的,LLM没有相关的知识来响应,导致框架没有给出错误或错误的答案。

CoN是一个自适应过程,或逻辑和推理层,其中直接信息与上下文推理和法学硕士知识识别相平衡。

数据的四个方面

为了使模型具有生成NoC阅读笔记的能力,需要进行微调。

论文训练了一个llama - 27b模型,将笔记能力整合到CON中。

CoN不仅是一个提示模板,而且还包含了一个经过微调的可以记笔记模型。因此CoN可以看作是RAG和Fine-Tuning的结合。

这又回到了数据人工智能的概念和数据的四个方面,即数据发现、数据设计、数据开发和数据交付。

一般来说,RAG和具体的CoN可以看作是数据交付过程的一部分。但是为了训练NoC模型,需要一个数据发现、数据设计和数据开发的过程。

对于这项研究,收集适当的训练数据至关重要。

每个阅读笔记的手动注释是资源密集型的,因此研究团队采用了最先进的语言模型来生成注释。

如果在企业环境中实施NoC,那么人工智能加速数据生产力工作室将是至关重要的。这种“人工”的过程对于具有清晰信号的相关训练数据非常重要。

CoN 模板

下面是LangSmith的CoN模板。给定一个问题,查询Wikipedia并使用带有Chain-of-Note提示的OpenAI的API提取答案。

对于标准RAG:

 Task Description: The primary objective is to briefly answer a specific 
 question.

对于带有CON的RALM:

 Task Description:

 1. Read the given question and five Wikipedia passages to gather relevant 
    information.
 2. Write reading notes summarizing the key points from these passages.
 3. Discuss the relevance of the given question and Wikipedia passages.
 4. If some passages are relevant to the given question, provide a brief 
    answer based on the passages. 
 5. If no passage is relevant, direcly 
    provide answer without considering the passages.

CoN的对于RAG的改善

RAG检索增强生成已经成为llm的重要推动者。最值得注意的是,随着RAG的引入,模型幻觉得到了很大程度的抑制,RAG也可以作为模型性能的均衡器。

RAG面临的挑战是确保在推理时向LLM提供准确、高度简洁和上下文相关的数据。

但是不相关数据的检索可能导致错误的响应,并可能导致模型忽略其固有的知识,即使它拥有足够的信息来处理查询。

所以CoN 作为一种新的方法,提高RAG的弹性。特别是在RAG数据不包含与查询上下文相关的明确信号的情况下。

该研究的下图更详细地说明了NoC的实现。该框架主要构建了三种类型的阅读笔记……

CoN框架为检索到的文档生成顺序的阅读注释,从而能够系统地评估从外部文档检索到的信息的相关性和准确性。

通过创建顺序阅读笔记,该模型不仅评估每个文档与查询的相关性,而且还确定这些文档中最关键和最可靠的信息片段。

这个过程有助于过滤掉不相关或不可信的内容,从而产生更准确和上下文相关的响应。

总结

基于llm的生成式人工智能实现的答案不是RAG或模型微调。而是两者的结合。因为上下文参考是非常重要的,从数据提取中的信号越清晰越好。经过微调的模型提供了额外的上下文,以及检索到的文档和NoC提示模板。数据与高效的数据发现和设计方法将变得越来越重要。

论文地址:

https://avoid.overfit.cn/post/1a108bbaf6c84b5fbc51554fefa222cd

目录
相关文章
|
6月前
|
机器学习/深度学习 数据可视化 PyTorch
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
498 2
|
5月前
|
机器学习/深度学习 缓存
Block Transformer:通过全局到局部的语言建模加速LLM推理
Block Transformer是一种优化自回归语言模型推理效率的新架构,通过块级自注意力来平衡全局和局部依赖,提高吞吐量。模型包含嵌入器、块解码器和令牌解码器,其中块解码器处理全局依赖,令牌解码器处理局部细节。这种方法减轻了KV缓存的延迟和内存开销,尤其是在长序列处理中。实验显示,尽管Block Transformer参数量增加,但推理速度显著提升,尤其是在大块长度和优化的组件比例下,实现了性能与速度的平衡。
303 7
|
3月前
|
SQL 自然语言处理 算法
评估数据集CGoDial问题之计算伪OOD样本的软标签的问题如何解决
评估数据集CGoDial问题之计算伪OOD样本的软标签的问题如何解决
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
YOLO目标检测专栏探讨了模型创新,如注意力机制,聚焦通道和空间信息的全局注意力模组(GAM),提升DNN性能。GAM在ResNet和MobileNet上优于最新方法。论文及PyTorch代码可在给出的链接找到。核心代码展示了GAM的构建,包含线性层、卷积和Sigmoid激活,用于生成注意力图。更多配置详情参阅相关博客文章。
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
|
4月前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
44 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
|
4月前
|
机器学习/深度学习 自然语言处理 区块链
Lookback Lens:用注意力图检测和减轻llm的幻觉
这篇论文的作者提出了一个简单的幻觉检测模型,其输入特征由上下文的注意力权重与新生成的令牌(每个注意头)的比例给出。
55 0
|
4月前
|
机器学习/深度学习 索引 Python
。这不仅可以减少过拟合的风险,还可以提高模型的准确性、降低计算成本,并帮助理解数据背后的真正含义。`sklearn.feature_selection`模块提供了多种特征选择方法,其中`SelectKBest`是一个元变换器,可以与任何评分函数一起使用来选择数据集中K个最好的特征。
。这不仅可以减少过拟合的风险,还可以提高模型的准确性、降低计算成本,并帮助理解数据背后的真正含义。`sklearn.feature_selection`模块提供了多种特征选择方法,其中`SelectKBest`是一个元变换器,可以与任何评分函数一起使用来选择数据集中K个最好的特征。
|
5月前
|
机器学习/深度学习 存储 计算机视觉
【YOLOv8改进】BRA(bi-level routing attention ):双层路由注意力(论文笔记+引入代码)
**BiFormer和HCANet摘要** BiFormer是CVPR2023提出的一种新型视觉Transformer,采用双层路由注意力机制实现动态稀疏注意力,优化计算效率和内存使用,适用于图像分类、目标检测和语义分割任务。代码可在GitHub获取。另一方面,HCANet是针对高光谱图像去噪的深度学习模型,融合CNN和Transformer,强化全局和局部特征建模,通过多尺度前馈网络提升去噪效果。HCANet在HSI数据集上表现优秀,其代码同样开放源代码。
|
6月前
|
运维 自然语言处理
【大模型】LLM 如何处理域外或无意义的提示?
【5月更文挑战第5天】【大模型】LLM 如何处理域外或无意义的提示?
|
6月前
|
数据可视化
R语言离散时间马尔可夫链(Markov chain)模型分类案例可视化分析
R语言离散时间马尔可夫链(Markov chain)模型分类案例可视化分析