unix高级编程-僵尸进程和孤儿进程

简介: unix高级编程-僵尸进程和孤儿进程

僵尸进程: 一个父进程利用fork创建子进程,如果子进程退出,而父进程没有利用wait 或者 waitpid 来获取子进程的状态信息,那么子进程的状态描述符依然保存在系统中。

孤儿进程:一个父进程退出, 而它的一个或几个子进程仍然还在运行,那么这些子进程就会变成孤儿进程,孤儿进程将被init进程(进程号为1)所收养,并由init进程对它们完成状态收集的工作

僵尸进程不为子进程“收尸”

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
int main(int argc, char const *argv[])
{
pid_t cid;
//child pid
printf("Before fork Process id:%d\n", getpid());
cid = fork();
if (cid == 0){
printf("Child process id (my parent pid is %d):%d\n", getppid(),getpid());
for(int i = 0; i < 3; i++){
printf("hello\n");
}
}else{
printf("Parent Process id: %d\n",getpid());
for(int i = 0; i < 1; i++){
printf("world(%d)\n",getppid());
sleep(100);
}
//wait(NULL); //等待子进程结束,再返回,()里面参数一般是空指针
}
return 0;
}

13591僵尸进程

避免僵尸进程

除了我们知道用wail函数等待,也就是前面注释的那个wait函数

我们还可以发送一个信号让程序帮我们回收产生的子进程

我们看下linux所支持的信号

signal(SIGCHLD,SIG_IGN);代表子进程死亡不给父进程发信号(ignore),也就是父进程创建子进程不给他“收尸”,那么系统会帮他“收尸”

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
int main(int argc, char const *argv[])
{
pid_t cid;
//child pid
signal(SIGCHLD,SIG_IGN);
printf("Before fork Process id:%d\n", getpid());
cid = fork();
if (cid == 0){
printf("Child process id (my parent pid is %d):%d\n", getppid(),getpid());
for(int i = 0; i < 3; i++){
printf("hello\n");
}
}else{
printf("Parent Process id: %d\n",getpid());
for(int i = 0; i < 1; i++){
printf("world(%d)\n",getppid());
sleep(100);
}
//wait(NULL); //等待子进程结束,再返回,()里面参数一般是空指针
}
return 0;
}

我们可以看到这里并没有僵尸进程了

大家可以尝试改写我的代码,自己写一个孤儿进程

相关文章
|
4天前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
44 13
|
2月前
|
算法 Unix 数据安全/隐私保护
Python编程--UNIX口令破解机
Python编程--UNIX口令破解机
28 1
|
3月前
|
存储 算法 Linux
C语言 多进程编程(一)进程创建
本文详细介绍了Linux系统中的进程管理。首先,文章解释了进程的概念及其特点,强调了进程作为操作系统中独立可调度实体的重要性。文章还深入讲解了Linux下的进程管理,包括如何获取进程ID、进程地址空间、虚拟地址与物理地址的区别,以及进程状态管理和优先级设置等内容。此外,还介绍了常用进程管理命令如`ps`、`top`、`pstree`和`kill`的使用方法。最后,文章讨论了进程的创建、退出和等待机制,并展示了如何通过`fork()`、`exec`家族函数以及`wait()`和`waitpid()`函数来管理和控制进程。此外,还介绍了守护进程的创建方法。
C语言 多进程编程(一)进程创建
|
2月前
|
Linux C++
Linux c/c++进程之僵尸进程和守护进程
这篇文章介绍了Linux系统中僵尸进程和守护进程的概念、产生原因、解决方法以及如何创建守护进程。
30 0
|
3月前
|
安全 开发者 Python
揭秘Python IPC:进程间的秘密对话,让你的系统编程更上一层楼
【9月更文挑战第8天】在系统编程中,进程间通信(IPC)是实现多进程协作的关键技术。IPC机制如管道、队列、共享内存和套接字,使进程能在独立内存空间中共享信息,提升系统并发性和灵活性。Python提供了丰富的IPC工具,如`multiprocessing.Pipe()`和`multiprocessing.Queue()`,简化了进程间通信的实现。本文将从理论到实践,详细介绍各种IPC机制的特点和应用场景,帮助开发者构建高效、可靠的多进程应用。掌握Python IPC,让系统编程更加得心应手。
39 4
|
3月前
|
Linux C语言
C语言 多进程编程(三)信号处理方式和自定义处理函数
本文详细介绍了Linux系统中进程间通信的关键机制——信号。首先解释了信号作为一种异步通知机制的特点及其主要来源,接着列举了常见的信号类型及其定义。文章进一步探讨了信号的处理流程和Linux中处理信号的方式,包括忽略信号、捕捉信号以及执行默认操作。此外,通过具体示例演示了如何创建子进程并通过信号进行控制。最后,讲解了如何通过`signal`函数自定义信号处理函数,并提供了完整的示例代码,展示了父子进程之间通过信号进行通信的过程。
|
3月前
|
Linux C语言
C语言 多进程编程(四)定时器信号和子进程退出信号
本文详细介绍了Linux系统中的定时器信号及其相关函数。首先,文章解释了`SIGALRM`信号的作用及应用场景,包括计时器、超时重试和定时任务等。接着介绍了`alarm()`函数,展示了如何设置定时器以及其局限性。随后探讨了`setitimer()`函数,比较了它与`alarm()`的不同之处,包括定时器类型、精度和支持的定时器数量等方面。最后,文章讲解了子进程退出时如何利用`SIGCHLD`信号,提供了示例代码展示如何处理子进程退出信号,避免僵尸进程问题。
|
3月前
|
消息中间件 Unix Linux
C语言 多进程编程(五)消息队列
本文介绍了Linux系统中多进程通信之消息队列的使用方法。首先通过`ftok()`函数生成消息队列的唯一ID,然后使用`msgget()`创建消息队列,并通过`msgctl()`进行操作,如删除队列。接着,通过`msgsnd()`函数发送消息到消息队列,使用`msgrcv()`函数从队列中接收消息。文章提供了详细的函数原型、参数说明及示例代码,帮助读者理解和应用消息队列进行进程间通信。
|
3月前
|
缓存 Linux C语言
C语言 多进程编程(六)共享内存
本文介绍了Linux系统下的多进程通信机制——共享内存的使用方法。首先详细讲解了如何通过`shmget()`函数创建共享内存,并提供了示例代码。接着介绍了如何利用`shmctl()`函数删除共享内存。随后,文章解释了共享内存映射的概念及其实现方法,包括使用`shmat()`函数进行映射以及使用`shmdt()`函数解除映射,并给出了相应的示例代码。最后,展示了如何在共享内存中读写数据的具体操作流程。
|
3月前
|
消息中间件 Unix Linux
C语言 多进程编程(二)管道
本文详细介绍了Linux下的进程间通信(IPC),重点讨论了管道通信机制。首先,文章概述了进程间通信的基本概念及重要性,并列举了几种常见的IPC方式。接着深入探讨了管道通信,包括无名管道(匿名管道)和有名管道(命名管道)。无名管道主要用于父子进程间的单向通信,有名管道则可用于任意进程间的通信。文中提供了丰富的示例代码,展示了如何使用`pipe()`和`mkfifo()`函数创建管道,并通过实例演示了如何利用管道进行进程间的消息传递。此外,还分析了管道的特点、优缺点以及如何通过`errno`判断管道是否存在,帮助读者更好地理解和应用管道通信技术。