【Linux】进程信号之信号的保存

简介: 【Linux】进程信号之信号的保存

一、信号的保存

1、信号其他相关常见概念

  • 实际执行信号的处理动作称为信号递达(Delivery)
  • 信号从产生到递达之间的状态,称为信号未决(Pending)

进程可以选择阻塞 (Block )某个信号。被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作。

注意:阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。

2、信号在内核中表示

信号在内核中的表示示意图:

在操作系统内核中有三张表,两张是位图结构(blockpending),一张是函数指针数组结构。

  • block表:该位图结构里面的对应位置的比特位是否为1,代表了该信号是否被阻塞。
  • pending表:该位图结构里面的对应位置的比特位是否为1,代表了该信号是否是未决状态。
  • handler表:该表里面存放的是函数指针,对应下标里面的函数指针表示收到该信号要调用的函数是哪一个。
    (整个三张表里面,数据在逻辑上是横向传递的)

信号里面的SIG_DFL表示的是执行默认动作,SIG_IGN表示的是执行忽略动作。它们的定义如下:

以前我们使用的signal函数的原理,就是修改了handler表里面对应位置的函数指针。

解释说明:

  • 每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
  • SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。
  • SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler

如果在进程解除对某信号的阻塞之前,这种信号产生过多次,将如何处理?

POSIX.1允许系统递送该信号一次或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。


3、系统内核中信号集

从信号在内核中的表示示意图来看:每个信号只有一个比特位的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。

因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型的本质是一个位图结构,它可以表示每个信号的“有效”或“无效”状态,在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。 阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。

sigset_t类型介绍

sigset_tLinux操作系统提供给我们的一种数据类型,其底层封装的是一个long类型的数组,我们使用这个数组里面的每一个比特位去表示相关的信息。

二、信号集操作函数

1、sigset_t 类型的操作函数

sigset_t类型对于每种信号用一个bit表示“有效”或“无效”状态,至于这个类型内部如何存储这些bit则依赖于系统实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_ t变量,而不应该直接操作它的内部数据。

  • 函数sigemptyset初始化 set 所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含 任何有效信号。
  • 函数sigfillset初始化 set 所指向的信号集,使其中所有信号的对应bit置位1,表示 该信号集的有效信号包括系统支持的所有信号。
  • 函数sigaddset是将 set 所指向的信号集里面信号signum对应的比特位置为1
  • 函数sigdelset是将 set 所指向的信号集里面信号signum对应的比特位置为0
  • sigismember是一个布尔函数,用于判断一个信号集 set 中是否包含signum信号,若包含则返回1,不包含则返回0,出错返回-1。
  • 注意,在使用sigset_ t类型的变量之前,一定要调用sigemptysetsigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddsetsigdelset在该信号集中添加或删除某种有效信号。
  • 这四个函数都是成功返回0,出错返回-1

2、关于block表的系统调用

sigprocmask调用函数可以读取或更改进程的信号屏蔽字(阻塞信号集)。

  • 参数
  • 第一个参数是一个标记位,它有下面三个选项可以选择:
    (假设当前的信号屏蔽字为mask)
参数 功能
SIG_BLOCK set包含了我们希望添加到当前信号屏蔽字的信号,相当于mask = mask | set
SIG_UNBLOCK set包含了我们希望从当前信号屏蔽字中解除阻塞的信号,相当于mask=mask&~set
SIG_SETMASK 设置当前信号屏蔽字为set所指向的值,相当于mask=set
  • 第二个参数是一个信号集。
  • 第三个信号是一个输出型参数,系统在给block信号集设置新的信号集时,会将老的信号集的内容提取出来将拷贝到oldset里面。
  • 返回值:如果调用成功就返回0,如果调用失败返回-1,错误码被设置。

对于被阻塞的信号,如果阻塞解除,则会被立即递达,所以如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达。

下面我们用代码演示证明我们上面的理论,下面的代码意思是我们先对2号信号进行屏蔽,然后打印老的信号屏蔽字,再然后我们打印当前进程的信号屏蔽字,在打印当前进程的信号屏蔽字的时候我们在键盘按下Ctrl + C观察进程是否会退出,如果不退出说明当前信号确实被屏蔽了,最后5s过后恢复原来的信号,2号信号应该被立即递达然后进程退出。

#include <iostream>
#include <signal.h>
#include <unistd.h>
// 打印sigset_t结构
void Printset(sigset_t* set)
{
    for (int i = 1; i <= 31;i++)
    {
        if (sigismember(set, i))
        {
            std::cout << "1";
        }
        else
        {
            std::cout << "0";
        }
    }
}
int main()
{
    // 变量的初始化
    int count = 0;
    sigset_t set, oset;
    sigemptyset(&set);
    sigemptyset(&oset);
    // 设置当前进程的信号屏蔽字
    sigaddset(&set, SIGINT);
    sigprocmask(SIG_SETMASK, &set, &oset);
    // 打印出老的信号屏蔽字
    std::cout << "老的信号屏蔽字是:";
    Printset(&oset);
    std::cout << std::endl;
    while (true)
    {
        std::cout << "目前信号屏蔽字是:";
        Printset(&set);
        std::cout << std::endl;
        if (count++ == 5)
        {
            // 恢复原来的信号屏蔽字
            std::cout << "恢复原来的信号屏蔽字" << std::endl;
            sigprocmask(SIG_SETMASK, &oset, &set);
        }
        sleep(1);
    }
    return 0;
}

运行结果如图所示:结果符合我们的预期!

3、关于pending表的系统调用

对于pending表我们无法修改,只能通过系统调用进行查看。

sigpending此函数很简单,此函数会读取当前进程的未决信号集,通过set参数传出,调用成功则返回0,出错则返回-1。

下面我们写一个样例继续验证我们上面的原理:我们先屏蔽2号信号,然后打印当前进程的未决信号集,在最初的时候由于进程没有收到信号,我们应该看到的是全零,再然后我们向进程发送一个2号信号,由于2号信号被阻塞,所以当前进程的未决信号集应该是第二个比特位为1,其他为全0。

#include <iostream>
#include <cstdlib>
#include <signal.h>
#include <unistd.h>
// 打印sigset_t结构
void Printset(sigset_t* set)
{
    for (int i = 1; i <= 31;i++)
    {
        if (sigismember(set, i))
        {
            std::cout << "1";
        }
        else
        {
            std::cout << "0";
        }
    }
}
int main()
{
    // 变量的初始化
    int count = 0;
    sigset_t set, oset, pending;
    sigemptyset(&set);
    sigemptyset(&oset);
    // 设置当前进程的信号屏蔽字
    sigaddset(&set, SIGINT);
    sigprocmask(SIG_SETMASK, &set, &oset);
    while (true)
    {
        // 打印未决信号集
        sigpending(&pending);
        std::cout << "目前的未决信号集是:";
        Printset(&pending);
        std::cout << std::endl;
        if (count++ == 5)
        {
            // 恢复原来的信号屏蔽字
            std::cout << "恢复原来的信号屏蔽字" << std::endl;
            sigprocmask(SIG_SETMASK, &oset, &set);
        }
        sleep(1);
    }
    return 0;
}

三、结语

本章讲述的是进程信号的保存,信号的保存概念偏多,实际操作偏少,所以对信号的保存要好好理解操作系统内核中blockpendinghandler表。

下一章我们继续深入理解进程信号的处理,继续提升我们对于信号的理解。当然如果本篇文章有错误或不足的地方,欢迎评论或私信讨论!那么我们下期见,byebye!

相关文章
|
5月前
|
并行计算 Linux
Linux内核中的线程和进程实现详解
了解进程和线程如何工作,可以帮助我们更好地编写程序,充分利用多核CPU,实现并行计算,提高系统的响应速度和计算效能。记住,适当平衡进程和线程的使用,既要拥有独立空间的'兄弟',也需要在'家庭'中分享和并行的成员。对于这个世界,现在,你应该有一个全新的认识。
237 67
|
6月前
|
安全 Linux
【Linux】阻塞信号|信号原理
本教程从信号的基本概念入手,逐步讲解了阻塞信号的实现方法及其应用场景。通过对这些技术的掌握,您可以更好地控制进程在处理信号时的行为,确保应用程序在复杂的多任务环境中正常运行。
233 84
|
4月前
|
Web App开发 Linux 程序员
获取和理解Linux进程以及其PID的基础知识。
总的来说,理解Linux进程及其PID需要我们明白,进程就如同汽车,负责执行任务,而PID则是独特的车牌号,为我们提供了管理的便利。知道这个,我们就可以更好地理解和操作Linux系统,甚至通过对进程的有效管理,让系统运行得更加顺畅。
115 16
|
4月前
|
Unix Linux
对于Linux的进程概念以及进程状态的理解和解析
现在,我们已经了解了Linux进程的基础知识和进程状态的理解了。这就像我们理解了城市中行人的行走和行为模式!希望这个形象的例子能帮助我们更好地理解这个重要的概念,并在实际应用中发挥作用。
93 20
|
3月前
|
监控 Shell Linux
Linux进程控制(详细讲解)
进程等待是系统通过调用特定的接口(如waitwaitpid)来实现的。来进行对子进程状态检测与回收的功能。
74 0
|
3月前
|
存储 负载均衡 算法
Linux2.6内核进程调度队列
本篇文章是Linux进程系列中的最后一篇文章,本来是想放在上一篇文章的结尾的,但是想了想还是单独写一篇文章吧,虽然说这部分内容是比较难的,所有一般来说是简单的提及带过的,但是为了让大家对进程有更深的理解与认识,还是看了一些别人的文章,然后学习了学习,然后对此做了总结,尽可能详细的介绍明白。最后推荐一篇文章Linux的进程优先级 NI 和 PR - 简书。
102 0
|
3月前
|
存储 Linux Shell
Linux进程概念-详细版(二)
在Linux进程概念-详细版(一)中我们解释了什么是进程,以及进程的各种状态,已经对进程有了一定的认识,那么这篇文章将会继续补全上篇文章剩余没有说到的,进程优先级,环境变量,程序地址空间,进程地址空间,以及调度队列。
65 0
|
3月前
|
Linux 调度 C语言
Linux进程概念-详细版(一)
子进程与父进程代码共享,其子进程直接用父进程的代码,其自己本身无代码,所以子进程无法改动代码,平时所说的修改是修改的数据。为什么要创建子进程:为了让其父子进程执行不同的代码块。子进程的数据相对于父进程是会进行写时拷贝(COW)。
67 0
|
6月前
|
Linux 数据库 Perl
【YashanDB 知识库】如何避免 yasdb 进程被 Linux OOM Killer 杀掉
本文来自YashanDB官网,探讨Linux系统中OOM Killer对数据库服务器的影响及解决方法。当内存接近耗尽时,OOM Killer会杀死占用最多内存的进程,这可能导致数据库主进程被误杀。为避免此问题,可采取两种方法:一是在OS层面关闭OOM Killer,通过修改`/etc/sysctl.conf`文件并重启生效;二是豁免数据库进程,由数据库实例用户借助`sudo`权限调整`oom_score_adj`值。这些措施有助于保护数据库进程免受系统内存管理机制的影响。
|
6月前
|
存储 Linux 调度
【Linux】进程概念和进程状态
本文详细介绍了Linux系统中进程的核心概念与管理机制。从进程的定义出发,阐述了其作为操作系统资源管理的基本单位的重要性,并深入解析了task_struct结构体的内容及其在进程管理中的作用。同时,文章讲解了进程的基本操作(如获取PID、查看进程信息等)、父进程与子进程的关系(重点分析fork函数)、以及进程的三种主要状态(运行、阻塞、挂起)。此外,还探讨了Linux特有的进程状态表示和孤儿进程的处理方式。通过学习这些内容,读者可以更好地理解Linux进程的运行原理并优化系统性能。
217 4