锂离子电池充电管理芯片应用

简介: 基本概述TP4054是一个完善的单片锂离子电池恒流/恒压线性电源管理芯片。更值得一提的是,TP4054专门设计适用于USB的供电规格。得益于内部的MOSFET结构,在应用上不需要外部电阻和阻塞二极管。在高能量运行和高外围温度时,热反馈可以控制充电电流以降低芯片温度。充电电压被限定在4.2V,充电电流通过外部电阻调节。在达到目标充电电压后,当充电电流降低到设定值的1/10时,TP4054就会自动结束充电过程。TP4054还可被设置于停止工作状态,使电源供电电流降到25μA。TP4054芯片具有CC/CV模式,可以更好地对锂离子电池进行充电管理和保护,同时能够起到很好的充电与

基本概述

TP4054是一个完善的单片锂离子电池恒流/恒压线性电源管理芯片。

更值得一提的是,TP4054专门设计适用于USB的供电规格。得益于内部的MOSFET结构,在应用上不需要外部电阻和阻塞二极管。在高能量运行和高外围温度时,热反馈可以控制充电电流以降低芯片温度。

充电电压被限定在4.2V,充电电流通过外部电阻调节。在达到目标充电电压后,当充电电流降低到设定值的1/10时,TP4054就会自动结束充电过程。TP4054还可被设置于停止工作状态,使电源供电电流降到25μA。

TP4054芯片具有CC/CV模式,可以更好地对锂离子电池进行充电管理和保护,同时能够起到很好的充电与放电保护功能。

TP4054确保电池接反时芯片自动进入保护状态,确保IC不被击穿导致电池自放电引起事故。 其余特性包括:充电电流监测,输入低电压闭锁,自动重新充电和充电已满及开始充电的标志。

引脚功能

CHRG(引脚1):漏极开路充电状态输出。当充电时,CHRG端口被一个内置的N沟道MOSFET置于低电位。当充电完成时,CHRG呈现高阻态。当TP4054检测到低电锁定条件时,CHRG呈现高阻态。当在BAT引脚和地之间接一1μF的电容,就可以完成电池是否接好的指示,当没有电池时,LED灯会快速闪烁。

GND(引脚2):接地端。

BAT(引脚3):充电电流输出端。给电池提供充电电流并控制浮动电压最终达到4.2V。电池接反时,内部保护电路保护VBAT的ESD二极管不被烧坏,同时GND与BAT之间形成大约0.7mA电流。

VCC(引脚4):提供正电压输入。为充电器供电。VCC可以为4.25V到6.5V并且必须有至少1μF的旁路电容。如果BAT引脚端电压与VCC的压差降到30mV以内时,TP4054进入停工状态,并使BAT电流降到2μA以下。

PROG(引脚5):充电电流编程,充电电流监控和关闭端。充电电流由一个精度为1%的接到地的电阻控制PROG脚。在恒定充电电流状态时,此端口提供1V的电压。

在所有状态下,此端口电压都可以用下面的公式测算充电电流:IBAT =(VPROG/RPROG)×1000。 PROG端口也可用来关闭充电器。把编程电阻同地端分离可以通过上拉的2μA电流源拉高PROG端口电压。当达到1.21V的极限停工电压值时,充当器进入停止工作状态,充电结束,输入电流降至25μA。此端口夹断电压大约2.4V。给此端口提供超过夹断电压的电压,将获得1.5 mA的高电流。再使PROG和地端结合将使充电器回到正常状态。

工作原理

TP4054是一款采用恒定电流/恒定电压算法的单节锂离子电池充电器。它能够提供最大500mA左右的充电电流(借助一个热设计良好的PCB布局)和一个内部P沟道功率MOSFET和热调节电路。无需隔离二极管或外部电流检测电阻器。

RPROG与充电电流的关系确定可残空下表:

充电状态指示器(CHRG)

TP4054有一个漏极开路状态指示输出端“CHRG”。当充电器处于充电状态时,CHRG被拉到低电平,在其它状态,CHRG处于高阻态。当电池没有接到充电器时,CHRG输出脉冲信号表示没有安装电池。当电池连接端BAT管脚的外接电容为10uF时CHRG闪烁周期约0.5-2秒。当不用状态指示功能时,将不用的状态指示输出端接到地。

结构框图

封装结构

注意事项

TP4054 测试中,芯片 BAT 端(3 号脚)应直接连接电池正极,不可串联电流表,电流表可接在芯片 Vcc 端。

  • 为保证各种情况下可靠使用,防止尖峰和毛刺电压引起的芯片损坏,建议TP4054 应用中 VIN 端和BAT 端分别接 1uF 和 10uF 的电解电容,如可能还可各再接一个 0.1u 的陶瓷电容。所有电容位置以靠近芯片引脚为优, 不宜过远。
  • 采用SOT23 封装,大电流应用中(350mA 以上)散热效果不佳可能引起充电电流受温度保护而减小。客户可以不接耗散电阻,若电流不能满足要求,请根据实际电源电压设计热耗散电阻,芯片 Vcc 端输入电压在 4.6V 为最佳,可得到较大充电电流,一般热耗散电阻为 0.5 至 1 欧姆。良好的 PCB 板布局可以有效减小客户在大电流充电应用中温度对电流的影响。
相关文章
|
6月前
|
监控 安全 芯片
带使能控制的锂电池充放电解决方案
一、产品概述 TP4594R 是一款集成线性充电管理、同步升压转换、电池电量指示和多种保护功能的单芯片电源管理 SOC,为锂电池的充放电提供完整的单芯片电源解决方案。 TP4594R 内部集成了线性充电管理模块、同步升压放电管理模块、电量检测与 LED 指示模块、保护模块。TP4594R内置充电与放电功率 MOS,充电电流为 250mA,最大同步升压输出电流为 500mA。 TP4594R 采用专利的充电电流自适应技术,同时采用专利的控制方式省去外部的功率设定电阻,降低功耗的同时降低系统成本。 TP4594R 内部集成了温度补偿、过温保护、过充与过放保护、输出过压保护、输出过流保护、输
|
12天前
|
芯片
2节串联锂电池充电管理芯片,有5V升压,9-12V降压,快充升降压
2节串联锂电池供电电压范围为6V-8.4V,标称7.4V。根据输入电压不同,需选择不同模式的充电管理芯片。5V输入需升压型,9V、12V输入需降压型,5V-20V输入需升降压型。推荐PW4284、PW4084、PW4203等型号,适用于各种应用场景。
|
2月前
|
芯片 SoC
两节锂电池充电芯片和充放电电路如何设计
两节锂电池的充放电电路设计主要包括三个部分:A保护电路、B充电电路和C放电电路。A电路(如PW7052芯片)用于检测电压电流并保护电池免受损坏;B电路(如PW4284芯片)负责充电管理,具备过压保护;C电路(如PW2162/PW2163芯片)则负责放电,提供稳定的输出电压。实际设计中,需注意各组件布局与连线,确保电路稳定可靠。
两节锂电池充电芯片和充放电电路如何设计
|
4月前
|
芯片
便携耳放的电池寿命是多久?
【7月更文挑战第11天】便携耳放的电池寿命是多久?
76 3
|
6月前
|
传感器 智能硬件
智能家电设备供电
智能家电设备供电
65 4
|
6月前
手机充电器散热对其充电能效的影响
手机充电器散热对其充电能效的影响
|
6月前
手机充电器散热对其充电能效转换的影响
手机充电器散热会对其充电能效产生一定影响。散热不好的充电器,在工作过程中会产生更多的热量,如果不能及时散热,就会导致充电器温度升高。温度升高会造成能量的损失,从而导致充电能效降低。
|
存储 安全
磷酸铁锂电池家庭储能系统
磷酸铁锂电池家庭储能系统
125 0
磷酸铁锂电池家庭储能系统
|
监控 安全 知识图谱
宁德时代2023款神行快充电池
随着电动汽车市场的不断扩大,电池技术也在日新月异地发展。作为全球领先的电动汽车电池供应商,宁德时代公司近日发布了2023款神行快充电池,旨在为用户提供更快、更长寿命的充电体验。
230 0