阿里云百炼 x AnalyticDB向量引擎, 搭积木式轻松开发专属大模型应用

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 对大模型应用跃跃欲试,但奈何技术栈复杂难以下手?已经进行试水,但缺乏调优手段无法保障召回率和问答准确度?自行搭建大模型、向量检索引擎、服务API等基础组件难以运维?大模型种类繁多,但缺乏行业模型和应用模板?阿里云百炼 x AnalyticDB向量引擎推出一站式企业专属大模型开发和应用平台,像搭积木一样轻松完成企业专属大模型应用的开发,提供应用API,可一键接入企业自己的业务应用对外提供服务。

1、产品简介

阿里云百炼是一站式的企业专属大模型生产平台,基于通义千问大模型和8大行级模型企业专属数据,结合全链路大模型开发工具所打造的一站式大模型商业化平台。提供完整的模型训练、微调、评估等产品工具,预置丰富的应用插件,提供便捷的集成方式更快更高效地完成大模型应用的构建。

阿里云百炼结合 AnalyticDB PostgreSQL 高性能向量引擎,企业可在之上构建企业专属知识库,让大模型具备私域知识。

image.png

(产品架构)


  • 面向对象:企业用户及伙伴研发/技术人员。
  • 核心能力:支持大模型训练和微调。
  • 服务形式:通过API服务输出给用户,方便用户进行集成和使用专属大模型能力。
  • 应用编排:支持用户打通自己的业务能力API,可以将专属大模型能力结合进入自己的业务链路。


2、产品优势

2.1 核心竞争力

image.png

2.2 AnalyticDB PostgreSQL 向量引擎

2.3 内置丰富应用模板

3、快速入门

基于企业文档的大模型问答为例,带大家一起快速搭建一个大模型应用以及在自己的业务中调用。更多能力请参考产品文档:阿里云百炼产品文档

3.1 导入企业专属知识

1)购买 AnalyticDB  PostgreSQL 向量引擎(购买链接 ),注意:向量引擎优化选择开启。【目前该能力仅支持北京】

2)在ADB-PG完成创建后,登录控制台进入实例页,可以看到【创建企业专属大模型】,进行阿里云百炼平台登录;

image.png

若该按钮不可用,请稍后,我们会在24小时内为您开放免费公测权限;


3)在阿里云百炼中选择您刚创建的 AnalyticDB PostgreSQL实例,构建私域知识库完成配置。

4)点击【导入企业数据】按钮,进行企业文档上传

3.2 创建大模型应用

1)新增应用

进入【应用中心】页面,点击【新增应用】按钮,输入应用名称,点击选择模型进行第二步操作;

2)选择模型

应用模型列表详情点击【应用类型说明】查看说明

3)测试

应用创建完成后可以先简单地进行测试验证模型效果,点击【测试】按钮,在输入框中输入【测试内容】,验证模型机器人回复的答案内容;(详细测试步骤可以参考【如何测试应用】)

3.3 调用大模型应用

专属大模型支持API接口调用,点击【调用】即可获取到API详细信息,快来使用吧~


4、产品入口

1)阿里云百炼入口:

  • 产品首页: bailian.aliyun.com
  • 控制台首页: bailian.console.aliyun.com

2)阿里云 AnalyticDB  PostgreSQL 版:


5、了解更多请联系

阿里云百炼 x AnalyticDB AIGC训练营开营啦!!!

这是首个阿里云百炼训练营,结合AnalyticDB PostgreSQL向量数仓,让您5分钟搭建专属大模型应用!

参与实践课程,还有多多福利等你来拿:

不仅有百炼公测名额及百万通义千问模型token,还有机会获得阿里云 X AMD联名限量礼品

点击下方链接,快来加入我们的训练营活动吧!

点击参加训练营:阿里云百炼 x AnalyticDB AIGC训练营

钉钉群:AnalyticDB

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
30天前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
127 2
|
30天前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
227 2
|
14天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
71 2
|
24天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
54 2
|
25天前
|
弹性计算 自然语言处理 安全
国内基础大模型的独立性及应用大模型的依赖性
本文探讨了国内基础大模型(如阿里巴巴的通义千问)的独立性及其应用大模型的依赖性。详细分析了这些模型的研发过程、应用场景及技术挑战,包括数据收集、模型架构设计和算力支持等方面。同时,讨论了微调模型、插件式设计和独立部署等不同实现方式对应用大模型的影响。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
11天前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
32 2
|
17天前
|
存储 Serverless API
基于百炼平台构建智能体应用——十分钟构造能主动提问的导购智能体
本文介绍了如何使用阿里云百炼大模型服务平台构建一个多智能体的智能导购应用,并将其部署到钉钉。通过百炼的Assistant API,您可以快速构建一个包含规划助理、手机导购、冰箱导购和电视导购的智能导购系统。文章详细讲解了从创建函数计算应用、访问网站、验证智能导购效果到将商品检索应用集成到智能导购中的全过程,帮助您快速实现智能导购功能。
基于百炼平台构建智能体应用——十分钟构造能主动提问的导购智能体
|
19天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
43 1
|
19天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
51 1