视觉SLAM 关键技术与发展概述

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 最近看了北京理工大学的课程《智能车辆概述与应用》,感觉入门角度讲的还不错的,于是通过本文记录关键内容。

背景

随着计算机视觉的发展,视觉定位导航中的得到应用;其中相关技术包括视觉里程计VO视觉SLAM

视觉里程计VO:关注两帧图像之间的位姿关系;一般不存储历史数据,只对当前或局部帧之间的位姿关系;往往忽视全局的一致性;运算速度快。

视觉SLAM:计算当前帧(或局部帧)具有历史数据地图 的位姿关系。维持全局的一致性,保持定位精度。

视觉里程计可以看作是视觉SLAM的一部分(前端部分)。


 一、视觉SLAM关键技术

视觉SLAM框架如下图所示:

image.gif

1.1 传感器数据

这部分主要是输入摄像头的图像数据;根据不同的视觉SLAM模型,输入的摄像头类型有:单目摄像头、或双目摄像头、或RGB-D摄像头等等。

1.2 前端 视觉里程计

视觉里程计(Visual Odometry),简称VO。这部分主要是计算图像帧之间 的相机位姿关系(相对位置关系)。通过拍摄图像,估计出相机的运行位置和姿态信息。

分类:单目视觉里程计、立体视觉里程计;

单目视觉里程计:往往无法估计深度信息,存在尺度歧义问题。

立体视觉里程计:能计算深度信息,不存在尺度歧义问题。而且,立体视觉能提供更丰富的数据,轨迹预测更准确。

关键技术:特征提取、特征匹配、运动估计。步骤流程图,如下所示:收集输入图像数据,然后进行特征提取、特征匹配、运动估计,最后进局部行优化。

image.gif

A)特征提取

特征提取:提取图像中的特征点。特征点关键点描述子两部分组成。

那什么是图像中的关键点啊?是指特征点在图像里的位置、大小、朝向等信息。

那什么是图像中的描述子啊?描述该关键点 周围像素的信息,人为设定的,通常是一个向量。比如,两个相似的特征点,它们的描述子应该一样。

为什么通常是用向量表示描述子啊?两个特征点在向量空间距离相近,可以认为是相同的描述子,进而表示两个特征点相似。

A.1)关键点

通常提取图像的角点作为关键点;通过一个小的窗口,观察灰度的变化,来识别角点。往任意方向移动,引起灰度的变化,这往往是角点。角点的检测如下图所示:

image.gif

常见的角点检测算法:FAST角点(如下图所示)、oFAST角点、sFAST角点(详细的后面文章再讲解)

A.2)描述子

常见的描述子有SIFI特征(尺度不变特征转换),对DoG(Difference of Gaussians,高斯差)特征点p进行筛选得到关键点。

为每个关键点分配方向,使其具有旋转不变性

对关键点的高斯邻域计算梯度值决定主方向和辅方向。归一化到单位长度,减小对光照的敏感。

image.gif

常见的描述子还有BRIEF(二值鲁棒独立元素特征),它是一种二进制的描述子,描述向量由许多个0和1组成。以特征点P为中心,把s*s大小的领域中,每个点对应的像素灰度值 与 特征点中心P进行比较,最后得到BRIEF描述子。

image.gif

A.3)特征提取 示例——ORB特征

ORB特征(Oriented FAST and Rotated BRIEF),采用BRIEF描述子,步骤流程如下图所示:

image.gif

B)特征匹配

特征匹配的目的是解决SLAM中的数据关联问题,即:确定当前的特征点之前看到的特征点 之间的一个对应关系。下图是两张图像,通过特征匹配,找到一一对应的特征点。

image.gif

经典示例:立体匹配,详细请参考:一篇文章认识《双目立体视觉》_一颗小树x的博客-CSDN博客

C)运动估计

运动估计是对相邻两帧图像运动变化做出估计,从而得到整体的运动轨迹当前的运动状态。在得到对应的特征点后,可以计算帧间的相对运动(运动估计)。

image.gif

2D-2D运动估计:两帧图像之间进行运动估计,在待计算的两帧图像的特征点,都用2维图像坐标表示。(求旋转矩阵R、平移向量t、奇异值分解法)

3D-3D运动估计:两帧图像之间进行运动估计,在待计算的两帧图像的特征点,都用3维坐标表示。(ICP、NDT算法)

3D-2D运动估计:两帧图像之间进行运动估计,在待计算的两帧图像的特征点,前一张用3维坐标表示,后用2维图像坐标表示。(在坐标转换过程中,需要计算最小重投影误差,PnP算法解决)

后面文章再详细讲解。。。

1.3 后端 优化

这部分主要是对前端(视觉里程计)的输出结果进行误差消除和优化,得到更优的位姿估计信息。

后端优化主要是消除SLAM的噪声,包括传感器的测量误差、标定误差、特征点位置误差等。为了尽量消除这些误差的影响,需对前端得到的位置姿态地图路标位置进行优化。

通常采用光束法平差(Bundle Adjustment,BA)的方法来调整关键帧的位置,使其达到最优。BA算法可以搭配G2O开源库使用。

1.4 回环检测

这部分主要是能识别出,摄像机之前经过的场景,从而构建回环;解决位置漂移的问题,让计算机理解环境的拓扑结构。

image.gif

1.5 建图

这部分主要是通过特征点进行对环境信息建图。后面补充更新..........

二、视觉SLAM发展概述

image.gif

2.1 Mono SLAM一基于扩展卡尔曼滤波

Mono SLAM是第一个实时单目视觉SLAM系统,以扩展卡尔曼滤波EKF为后端,追踪前端非常稀疏的特征点。Mono SLAM 已相机的当前状态和所有路标点为状态量,更新它的均值和协方差。

基于扩展卡尔曼滤波的视觉SLAM,通过非线性系统状态方程的一阶偏导 来近似运动模型。它忽略了泰勒展开的高阶项,这样不可避免地引入线性误差,因此只有状态方程接近线性时,才能使用扩展卡尔曼滤波。扩展卡尔曼滤波中,每个特征点的位置服从高斯分布。

image.gif

2.2 FastSLAM2.0一基于粒子滤波和卡尔曼滤波

使用粒子滤波卡尔曼滤波做出了FastSLAM,将SLAM问题分解为定位问题基于位姿估计的路标集合估计问题,后来又经过改进,提出了FastSLAM2.0.

2.3 PTAM一基于关键帧

PTAM提出并实现了跟踪与建图过程的双线程并行化。使用非线性优化作为后端。

引入了关键顿机制:不必精细地处理每一幅图像,而是把几个关键图像串起来,然后优化其轨迹和地图。

只是应用于小场景,并没有在大范围环境中进行测试。

2.4 ORB-SLAM一基于关键帧

它使用三个线程完成SLAM

    1. 实时跟踪特征点的Tracking线程;
    2. 局部Bundle Adjustmente的建图优化线程;
    3. 全局Pose Graph的回环检测与优化线程。

    image.gif

    ORB-SLAM特点:

      • 支持单目、双目、RGB-D三种模式;
      • 采用ORB特征,用时短,可实时计算;
      • 具有良好的旋转和缩放不变性;
      • 提供描述子,大范围运动时也能进行回环检测和重定位。

      2.5 LSD-SLAM一基于直接法

      ·LSD-SLAM的核心贡献是将直接法应用到了半稠密的单目SLAM中。优点:

        • LSD-SLAM的直接法是针对像素进行的。
        • LSD-SLAM在CPU上实现了半稠密场景的重建。

        2.6 V-LOAM一基于视觉与雷达相结合

        使用视觉里程计方法来对自身运动进行估计,并对雷达点进行匹配;利用基于雷达的里程计方法进一步对定位和地图进行优化;同时利用相机和雷达的优势,提高了定位和建图的准确性与稳定性。

        image.gif



        本文只供大家参加与学习,谢谢!

        相关文章
        |
        6月前
        |
        机器学习/深度学习 人工智能 监控
        机器视觉:技术原理、应用与未来发展
        机器视觉:技术原理、应用与未来发展
        |
        1月前
        |
        存储 人工智能 自然语言处理
        边缘智能的新时代:端侧大模型的研究进展综述
        【10月更文挑战第9天】随着人工智能的发展,大语言模型在自然语言处理领域取得突破,但在资源受限的边缘设备上部署仍面临挑战。论文《On-Device Language Models: A Comprehensive Review》全面综述了端侧大模型的研究进展,探讨了高效模型架构、压缩技术、硬件加速及边缘-云协作等解决方案,展示了其在实时、个性化体验方面的潜力,并指出了未来的研究方向和挑战。
        128 2
        |
        4月前
        |
        机器学习/深度学习 人工智能 监控
        计算机视觉技术在安防领域的应用深度解析
        【7月更文挑战第28天】计算机视觉技术作为人工智能领域的重要分支,在安防领域的应用前景广阔。通过不断提升技术性能和解决实际应用中的问题,计算机视觉技术将进一步提升安防工作的效率和准确性,为公共安全和社会稳定贡献更大的力量。
        |
        5月前
        |
        机器学习/深度学习
        【机器学习】视觉基础模型的三维意识:前沿探索与局限
        【机器学习】视觉基础模型的三维意识:前沿探索与局限
        144 0
        |
        6月前
        |
        机器学习/深度学习 运维 监控
        深度视野:深度学习技术在智能监控系统中的革新应用
        【4月更文挑战第5天】 随着人工智能技术的飞速发展,深度学习已成为图像处理和分析领域的核心技术之一。本文将深入探讨基于深度学习的图像识别技术在智能监控领域的应用及其带来的变革。我们将从神经网络的基本构成出发,解析其如何实现对监控图像中复杂场景的高效识别与分析,并进一步讨论这些技术在提高监控准确性、实时性和自动化水平方面的作用。此外,文中还将涉及深度学习技术面临的挑战及未来发展趋势。
        |
        人工智能 智能设计 达摩院
        |
        机器学习/深度学习 存储 人工智能
        |
        6月前
        |
        算法 自动驾驶 人机交互
        三维视觉技术的发展
        三维视觉技术的发展
        137 2
        |
        6月前
        |
        传感器 算法 Shell
        [工业3D] 主流的3D光学视觉方案及原理
        [工业3D] 主流的3D光学视觉方案及原理
        134 0
        |
        机器学习/深度学习 人工智能 达摩院
        视觉AI技术体系及趋势概述
        视觉技术是 AI 里应用最广,任务最多,技术方面非常复杂,发展非常快的一个AI的主要子方向。