OpenCV 打开双目摄像头(python版)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
大数据开发治理平台 DataWorks,不限时长
简介: 本文主要介绍在OpenCV用使用双目摄像头,包括:打开单目摄像头、设置摄像头参数、拍照、录制视频。

 前言

本文主要介绍在OpenCV用使用双目摄像头,包括:打开单目摄像头、设置摄像头参数、拍照、录制视频。

环境:编程语言:Python3        主要依赖库:OpenCV3.x 或 OpenCV4.x

双目摄像头

双目同步摄像头,两个镜头共用一个设备ID,左右摄像机同一频率。这款摄像头分辨率支持2560*960或以上。

image.gif

思路流程

1、由于两个镜头共用一个设备ID,打开摄像头时使用cv2.VideoCapture()函数,只需打开一次。区别有的双目摄像头是左右镜头各用一个设备ID,需要打开两次cv2.VideoCapture(0),cv2.VideoCapture(1)。

2、双目摄像头的总分辨率是由左右镜头组成的,比如:左右摄像机总分辨率1280x480;分割为左相机640x480、右相机640x480

image.gif

为了方便理解画了张草图;图中的“原点”是图像像素坐标系的原点。

3、分割后,左相机的分辨率:高度 0:480、宽度 0:640

                  右相机的分辨率:高度 0:480、宽度 640:1280

4、转换为代码后

# 读取摄像头数据
    ret, frame = camera.read()
    #裁剪坐标为[y0:y1, x0:x1]  HEIGHT * WIDTH
    left_frame = frame[0:480, 0:640]
    right_frame = frame[0:480, 640:1280]
    cv2.imshow("left", left_frame)
    cv2.imshow("right", right_frame)

image.gif

1)分辨率1280x480

源代码:

# -*- coding: utf-8 -*-
import cv2
import time
AUTO = False  # 自动拍照,或手动按s键拍照
INTERVAL = 2 # 自动拍照间隔
cv2.namedWindow("left")
cv2.namedWindow("right")
camera = cv2.VideoCapture(0)
# 设置分辨率 左右摄像机同一频率,同一设备ID;左右摄像机总分辨率1280x480;分割为两个640x480、640x480
camera.set(cv2.CAP_PROP_FRAME_WIDTH,1280)
camera.set(cv2.CAP_PROP_FRAME_HEIGHT,480)
counter = 0
utc = time.time()
folder = "./SaveImage/" # 拍照文件目录
def shot(pos, frame):
    global counter
    path = folder + pos + "_" + str(counter) + ".jpg"
    cv2.imwrite(path, frame)
    print("snapshot saved into: " + path)
while True:
    ret, frame = camera.read()
    # 裁剪坐标为[y0:y1, x0:x1] HEIGHT*WIDTH
    left_frame = frame[0:480, 0:640]
    right_frame = frame[0:480, 640:1280]
    cv2.imshow("left", left_frame)
    cv2.imshow("right", right_frame)
    now = time.time()
    if AUTO and now - utc >= INTERVAL:
        shot("left", left_frame)
        shot("right", right_frame)
        counter += 1
        utc = now
    key = cv2.waitKey(1)
    if key == ord("q"):
        break
    elif key == ord("s"):
        shot("left", left_frame)
        shot("right", right_frame)
        counter += 1
camera.release()
cv2.destroyWindow("left")
cv2.destroyWindow("right")

image.gif

补充理解

OpenCV有VideoCapture()函数,能用来定义“摄像头”对象,0表示第一个摄像头(一般是电脑内置的摄像头);如果有两个摄像头,第二个摄像头则对应VideoCapture(1)。

在while循环中使用“摄像头对象”的read()函数一帧一帧地读取摄像头画面数据。

imshow函数是显示摄像头的某帧画面;cv2.waitKey(1)是等待1ms,如果期间检测到了键盘输入q,则退出while循环。

效果

image.gif


2)分辨率2560x720

源代码:

# -*- coding: utf-8 -*-
import cv2
import time
AUTO = False  # 自动拍照,或手动按s键拍照
INTERVAL = 2 # 自动拍照间隔
cv2.namedWindow("left")
cv2.namedWindow("right")
camera = cv2.VideoCapture(0)
# 设置分辨率左右摄像机同一频率,同一设备ID;左右摄像机总分辨率2560x720;分割为两个1280x720
camera.set(cv2.CAP_PROP_FRAME_WIDTH,2560)
camera.set(cv2.CAP_PROP_FRAME_HEIGHT,720)
counter = 0
utc = time.time()
folder = "./SaveImage/" # 拍照文件目录
def shot(pos, frame):
    global counter
    path = folder + pos + "_" + str(counter) + ".jpg"
    cv2.imwrite(path, frame)
    print("snapshot saved into: " + path)
while True:
    ret, frame = camera.read()
    print("ret:",ret)
    # 裁剪坐标为[y0:y1, x0:x1]    HEIGHT * WIDTH
    left_frame = frame[0:720, 0:1280]
    right_frame = frame[0:720, 1280:2560]
    cv2.imshow("left", left_frame)
    cv2.imshow("right", right_frame)
    now = time.time()
    if AUTO and now - utc >= INTERVAL:
        shot("left", left_frame)
        shot("right", right_frame)
        counter += 1
        utc = now
    key = cv2.waitKey(1)
    if key == ord("q"):
        break
    elif key == ord("s"):
        shot("left", left_frame)
        shot("right", right_frame)
        counter += 1
camera.release()
cv2.destroyWindow("left")
cv2.destroyWindow("right")

image.gif

其他版本:OpenCV 双目摄像头拍照 C++

相关文章
|
20天前
|
算法 计算机视觉 开发者
如何在Python中使用OpenCV实现人脸识别
人脸识别技术在当今社会得到了广泛的应用,如何在Python中使用OpenCV实现人脸识别成为了很多开发者关注的话题。本文将介绍如何使用OpenCV库进行人脸检测和人脸识别,并提供完整的代码示例。
|
28天前
|
机器学习/深度学习 存储 算法
Python OpenCV 蓝图:6~7
Python OpenCV 蓝图:6~7
15 0
|
28天前
|
传感器 存储 算法
Python OpenCV 蓝图:1~5
Python OpenCV 蓝图:1~5
20 0
|
28天前
|
Ubuntu Unix 计算机视觉
Python OpenCV 计算机视觉:6~7
Python OpenCV 计算机视觉:6~7
32 0
|
28天前
|
存储 API 计算机视觉
Python OpenCV 计算机视觉:1~5
Python OpenCV 计算机视觉:1~5
39 0
|
28天前
|
机器学习/深度学习 存储 数据库
Python3 OpenCV4 计算机视觉学习手册:6~11(5)
Python3 OpenCV4 计算机视觉学习手册:6~11(5)
39 0
|
28天前
|
机器学习/深度学习 数据可视化 算法
Python3 OpenCV4 计算机视觉学习手册:6~11(4)
Python3 OpenCV4 计算机视觉学习手册:6~11(4)
66 0
|
28天前
|
传感器 算法 vr&ar
Python3 OpenCV4 计算机视觉学习手册:6~11(3)
Python3 OpenCV4 计算机视觉学习手册:6~11(3)
73 0
|
28天前
|
机器学习/深度学习 算法 数据挖掘
Python3 OpenCV4 计算机视觉学习手册:6~11(2)
Python3 OpenCV4 计算机视觉学习手册:6~11(2)
61 0
|
28天前
|
算法 数据可视化 数据库
Python3 OpenCV4 计算机视觉学习手册:6~11(1)
Python3 OpenCV4 计算机视觉学习手册:6~11(1)
35 0

相关产品

  • 大数据开发治理平台 DataWorks
  • 检索分析服务 Elasticsearch版
  • 日志服务