关于在安装caffe2环境中遇到的坑整理(欢迎入坑讨论)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 关于在安装caffe2环境中遇到的坑整理(欢迎入坑讨论)

 


1.ImportError: cannot import name caffe2_pb2

测试caffe2的pytorch环境是否正常的时候使用

root@lxsj-ThinkStation:~/pytorch# python
Python 2.7.12 (default, Dec  4 2017, 14:50:18) 
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from caffe2.python import workspace
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "caffe2/python/__init__.py", line 2, in <module>
    from caffe2.proto import caffe2_pb2
ImportError: cannot import name caffe2_pb2

image.gif

解决方案:在pytorch路径下,或者root目录下找到.bashrc文件,打开。

1. 在末尾fi后面 写入

export PYTHONPATH=/root/pytorch/build:/usr/local:$PYTHONPATH
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

image.gif

然后

source .bashrc

image.gif

重新进入之后不会报错了


2.ImportError: No module named _tkinter, please install the python-tk package

安装python-tk即可

apt-get install python-tk


3.WARNING:root:This caffe2 python run does not have GPU support. Will run in CPU only mode

root@lxsj-ThinkStation:~/download#  python -c 'from caffe2.python import core'
WARNING:root:This caffe2 python run does not have GPU support. Will run in CPU only mode.

image.gif

然后需要在环境变量里添加一行 vim ~/.bashrc

export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}

image.gif

然后source ~/.bashrc


4.AssertionError: Torch not compiled with CUDA enabled

执行如下脚本

import os
import numpy as np
import torch
import torch.nn
import torchvision.models as models
from torch.autograd import Variable 
import torch.cuda
import torchvision.transforms as transforms
from PIL import Image
img_to_tensor = transforms.ToTensor()
def make_model():
    resmodel=models.resnet34(pretrained=True)
    resmodel.cuda()#将模型从CPU发送到GPU,如果没有GPU则删除该行
    return resmodel
#分类
def inference(resmodel,imgpath):
    resmodel.eval()#必需,否则预测结果是错误的
    img=Image.open(imgpath)
    img=img.resize((224,224))
    tensor=img_to_tensor(img)
    tensor=tensor.resize_(1,3,224,224)
    tensor=tensor.cuda()#将数据发送到GPU,数据和模型在同一个设备上运行
    result=resmodel(Variable(tensor))
    result_npy=result.data.cpu().numpy()#将结果传到CPU,并转换为numpy格式
    max_index=np.argmax(result_npy[0])
    return max_index
#特征提取
def extract_feature(resmodel,imgpath):
    resmodel.fc=torch.nn.LeakyReLU(0.1)
    resmodel.eval()
    img=Image.open(imgpath)
    img=img.resize((224,224))
    tensor=img_to_tensor(img)
    tensor=tensor.resize_(1,3,224,224)
    tensor=tensor.cuda()
    result=resmodel(Variable(tensor))
    result_npy=result.data.cpu().numpy()
    return result_npy[0]
if __name__=="__main__":
    model=make_model()
    imgpath='xx.jpg'
    print inference(model,imgpath)
    print extract_feature(model, imgpath)

image.gif

结果提示

root@lxsj-ThinkStation:~/example# python index.py 
Traceback (most recent call last):
  File "index.py", line 57, in <module>
    model=make_model()
  File "index.py", line 19, in make_model
    resmodel.cuda()#将模型从CPU发送到GPU,如果没有GPU则删除该行
  File "/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py", line 258, in cuda
    return self._apply(lambda t: t.cuda(device))
  File "/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py", line 185, in _apply
    module._apply(fn)
  File "/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py", line 191, in _apply
    param.data = fn(param.data)
  File "/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py", line 258, in <lambda>
    return self._apply(lambda t: t.cuda(device))
  File "/usr/local/lib/python2.7/dist-packages/torch/cuda/__init__.py", line 161, in _lazy_init
    _check_driver()
  File "/usr/local/lib/python2.7/dist-packages/torch/cuda/__init__.py", line 75, in _check_driver
    raise AssertionError("Torch not compiled with CUDA enabled")
AssertionError: Torch not compiled with CUDA enabled

image.gif

那么我们就来检测cuda是否生效

root@lxsj-ThinkStation:~/example# cat test.py

import torch

print(torch.cuda.is_available())

返回的是False

所以估计是当时编译的pytorch的方式有问题,所以重新编译

cd pytorch
git submodule update --init --recursive
python setup.py install

image.gif

然后运行测试cuda返回True,运行刚才的脚本不再抛出异常

5.系统找不到caffe2的依赖库和头文件

应该是当时只编译了,要进入到build目录下进行make install 然后重新编译即可

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
并行计算 Ubuntu 算法框架/工具
caffe2安装篇(二) ubuntu16.04 安装方法
caffe2安装篇(二) ubuntu16.04 安装方法
|
5月前
|
自然语言处理 IDE 测试技术
通义灵码支持 DeepSeek-V3 和R1 满血版模型,免费用
通义灵码最全使用指南,一键收藏。
122868 25
通义灵码支持 DeepSeek-V3 和R1 满血版模型,免费用
安装Caffe2
安装Caffe2
111 0
|
9月前
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp的幼儿资源互助共享平台的详细设计和实现(源码+lw+部署文档+讲解等)
基于SpringBoot+Vue+uniapp的幼儿资源互助共享平台的详细设计和实现(源码+lw+部署文档+讲解等)
|
6月前
|
安全 异构计算
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
301 0
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
|
机器学习/深度学习 编解码 算法
又改YOLO | 项目如何改进YOLOv5?这篇告诉你如何修改让检测更快、更稳!!!
又改YOLO | 项目如何改进YOLOv5?这篇告诉你如何修改让检测更快、更稳!!!
1033 0
|
数据挖掘
模糊聚类在负荷实测建模中的应用(Matlab代码实现)
模糊聚类在负荷实测建模中的应用(Matlab代码实现)
106 0
|
存储 机器学习/深度学习 物联网
微调llama2模型教程:创建自己的Python代码生成器
本文将演示如何使用PEFT、QLoRa和Huggingface对新的lama-2进行微调,生成自己的代码生成器。所以本文将重点展示如何定制自己的llama2,进行快速训练,以完成特定任务。
567 2
|
并行计算 计算机视觉 异构计算
CV之detectron2:detectron2安装过程记录
CV之detectron2:detectron2安装过程记录