网络的救命稻草:重传机制如何确保数据顺利传输?

简介: 在网络传输中,数据的可靠性和稳定性一直是一个重要的挑战。幸运的是,重传机制应运而生,为我们解决了这个问题。本文将深入探讨重传机制在网络中的应用和工作原理。我们将介绍TCP中最常见的超时重传和快速重传,以及SACK和D-SACK这两种高级重传机制。了解这些机制如何工作可以帮助我们更好地理解数据传输的可靠性和稳定性的保障。

重传机制

在设计架构或涉及网络时,我们都知道网络是不可靠的,可能会发生超时、断开连接、网络分区等各种问题。这些问题对于数据传输的可靠性和稳定性产生了很大的挑战。为了解决这些问题,各个组织都设立了专门的网络部门,致力于研究和解决网络问题。

TCP实现可靠传输的方式之一是通过序列号与确认应答。在TCP中,当发送端的数据包到达接收主机时,接收主机会返回一个确认应答消息,表示已经成功接收到数据。
image

然而,由于网络的不可靠性,有时候确认应答消息可能丢失或延迟到达。为了解决这个问题,TCP引入了重传机制。接下来说说常见的重传机制:

  • 超时重传:当发送端发送了一个数据包后,会启动一个定时器,等待接收端的确认应答。如果在指定的时间内没有收到确认应答,发送端会认为数据包丢失,然后重新发送该数据包。
  • 快速重传:在TCP中,如果发送端连续收到3个重复的确认应答,就会认为有一个数据包丢失了。此时,发送端会立即重传该数据包,而不再等待超时。
  • SACK:SACK是Selective Acknowledgement(选择性确认)的缩写,它允许接收端在确认应答中指定哪些数据包已经收到,哪些数据包还没有收到。这样,发送端就可以根据接收端的确认情况,有选择地进行重传。
  • D-SACK:D-SACK是Duplicate Selective Acknowledgement(重复选择性确认)的缩写,它允许接收端在确认应答中指定哪些数据包是重复接收的。发送端可以根据这些信息来判断哪些数据包需要重传。

超时重传

超时重传是TCP中最简单也是最常见的形式之一,它的工作原理如下:发送方在发送数据后会设定一个定时器,当超过一定时间后,如果发送方未收到接收方发送的ACK数据包,就会触发超时重传机制,即重新发送之前未收到ACK的数据包。

超时重传机制主要应用于以下两种情况中:

  1. 数据包未能到达接收方:在这种情况下,接收方无法发送ACK确认,因为它根本没有收到数据包。
  2. 接收方发送的ACK丢失:在这种情况下,接收方确实接收到了数据包并发送了ACK,但ACK在网络传输过程中丢失了。

image

如果超时重发的数据,再次超时的时候,又需要重传的时候,TCP 会将下一次超时时间间隔设为先前值的两倍。通过将超时时间间隔加倍,TCP 在网络不稳定时能够适当延长等待时间,以期待数据包能够成功传输。这种策略的目的是避免过早地重传数据,从而减少网络拥塞和带宽浪费。

通过观察上述两种情况,我们需要记住:网络传输是双向的,因此在任何时候都需要考虑发送方和接收方之间的传输线路。这样,我们就可以更好地理解下面要介绍的几种重传机制。

超时触发重传存在的一个问题是,超时周期可能相对较长,导致数据传输的延迟。为了解决这个问题,我们可以采用「快速重传」机制,从而缩短重传的等待时间。

快速重传

TCP还有一种称为快速重传(Fast Retransmit)的机制,它不是基于时间而是基于数据的驱动重传。快速重传机制的工作原理其实非常简单,我用一张图来说明:

image

在上图中,发送方发送了1、2、3、4、5五份数据:

  1. 第一份数据Seq1先到达接收方,接收方发送了Ack2回应;
  2. 由于某些原因,第二份数据Seq2未到达,但第三份数据Seq3到达了,接收方仍然发送了Ack2回应;
  3. 后面的Seq4和Seq5都到达了,但接收方仍然发送了Ack2回应,因为Seq2还未到达;
  4. 发送方收到了三个Ack=2的确认,意识到Seq2还未到达,于是在定时器过期之前,重传了丢失的Seq2;
  5. 最后,接收方收到了Seq2,此时因为Seq3、Seq4、Seq5都已经收到,接收方发送了Ack6回应。

至于为什么每次都返回的是ACK=2,而不是下一个返回当前Seq+1,是因为在快速重传机制中,接收方只返回对最后一个按序接收的数据的ACK。当接收方发现有数据丢失时,会重复发送对丢失数据前一个按序接收的数据的ACK,以触发发送方进行快速重传。因此,每次返回的ACK是重复的,以便发送方能够快速识别出数据丢失并进行重传。

因此,在快速重传的工作方式中,当收到三个相同的ACK报文时,发送端会在定时器过期之前重传丢失的报文段。虽然快速重传机制解决了超时时间的问题,但它仍然面临着另一个问题,即在重传时是重传之前的一个报文还是重传所有的报文。

举个例子,对于上述情况,是重传Seq2呢?还是重传Seq2、Seq3、Seq4、Seq5呢?发送端并不清楚这连续的三个ACK2是由哪个传回的。

根据TCP的不同实现,以上两种情况都有可能发生。这就是一把双刃剑。为了解决不知道重传哪些TCP报文的问题,SACK方法应运而生。

SACK 方法

还有一种实现重传机制的方式叫做选择性确认(Selective Acknowledgment,SACK)。SACK需要在TCP头部的"选项"字段中添加一个SACK选项,通过该选项发送缓存地图给发送方,从而让发送方知道哪些数据已经收到,哪些数据还未收到。有了这些信息,发送方就可以只重传丢失的数据。

如下图所示,当发送方收到三次相同的确认报文时,就会触发快速重传机制。通过SACK信息,发送方发现只有200~299这一段数据丢失,因此在进行重传时,只选择重复发送这个TCP段。

image

请记住,SACK记录的始终是当前接收到的数据包的序列号,不像ACK必须按顺序进行。乱序接收也是可以的。此外,还需要注意ACK和SACK这两个值的大小关系。在SACK机制中,ACK的值永远小于SACK的值。

要支持SACK,必须双方都要支持。在Linux系统下,可以通过设置net.ipv4.tcp_sack参数来开启该功能(从Linux 2.4版本开始,默认就是开启的)。

Duplicate SACK

看起来SACK已经很完美了,没有什么需要解决的了。但是你可以想象一下这种网络情况:发送方的数据实际上已经全部到达接收方,但是接收方却没有发送任何ACK应答数据包给发送方。这会导致发送方超时重传,首先触发的是序列号较小的数据包。接收方接收到了重复的数据包并返回给发送方,但是SACK的值小于ACK的值,这与SACK机制不同。你可以看到,D-SACK机制主要使用SACK来告知发送方哪些数据包已被重复接收,而不是像SACK机制一样重发实际上缺少的数据包。

如下图所示:
image

  • 接收方发送给发送方的两个ACK确认应答都丢失了,所以发送方超时后重传了第一个数据包(3000~3499)。
  • 接收方发现数据是重复收到的,于是回复了一个SACK=3000-3500,告诉发送方3000-3500的数据已经被接收了。因为ACK已经到了4000,意味着4000之前的所有数据都已收到,所以这个SACK代表着D-SACK。
  • 这样发送方就知道数据没有丢失,是接收方的ACK确认报文丢失了。此时,发送方就不会再重发剩下的数据包,从而减少了多余的网络传输。

第二种情况:网络延时

image

  • 在发送方发送的数据包(1000-1499)经历了网络延迟,导致发送方未收到Ack 1500的确认报文。
  • 随后,接收方收到了延迟的数据包(1000-1499)并触发了快速重传机制,随后接收方发送了三个相同的ACK确认报文。
  • 由于ACK已经到达3000,接收方在回复中包含了SACK=1000~1500,表示接收方收到了重复的数据包,所以这个 SACK 是 D-SACK,表示收到了重复的包。
  • 这样发送方就明白,快速重传机制被触发的原因不是因为发送出去的数据包丢失,也不是因为回复的ACK丢失,而是由于网络延迟的存在。

可以看出,D-SACK(Duplicate Selective Acknowledgment)具有以下几个优点:

  1. 它可以提供给发送方有关丢包原因的信息,发送方可以知道是发送的数据包丢失了还是接收方的ACK包丢失了。
  2. 它可以帮助发送方判断是否由于网络延迟而导致数据包丢失。
  3. 它可以帮助发送方判断是否网络中的数据包被复制了。

在Linux系统中,可以通过设置net.ipv4.tcp_dsack参数来启用或禁用D-SACK功能(在Linux 2.4版本之后,默认为启用状态)。

总结

重传机制是为了解决网络不可靠性而存在的一种方法。TCP通过序列号与确认应答来实现可靠传输,但由于网络的问题,确认应答可能会丢失或延迟到达。为了解决这个问题,TCP引入了重传机制,包括超时重传、快速重传、SACK和D-SACK。

超时重传是最常见的重传机制,当发送端发送数据包后,等待一定时间内未收到确认应答时,会重新发送数据包。快速重传是基于数据的驱动重传,当发送端连续收到三个重复的确认应答时,会立即重传丢失的数据包。SACK允许接收端在确认应答中指定已收到的数据包,发送端可以根据这些信息有选择地进行重传。D-SACK则是在SACK的基础上,告知发送端哪些数据包是重复接收的。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
1月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
229 0
|
2月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
|
3月前
|
数据采集 存储 算法
MyEMS 开源能源管理系统:基于 4G 无线传感网络的能源数据闭环管理方案
MyEMS 是开源能源管理领域的标杆解决方案,采用 Python、Django 与 React 技术栈,具备模块化架构与跨平台兼容性。系统涵盖能源数据治理、设备管理、工单流转与智能控制四大核心功能,结合高精度 4G 无线计量仪表,实现高效数据采集与边缘计算。方案部署灵活、安全性高,助力企业实现能源数字化与碳减排目标。
102 0
|
4月前
|
Python
LBA-ECO CD-32 通量塔网络数据汇编,巴西亚马逊:1999-2006,V2
该数据集汇集了1999年至2006年间巴西亚马逊地区九座观测塔的碳和能量通量、气象、辐射等多类数据,涵盖小时至月度时间步长。作为第二版汇编,数据经过协调与质量控制,扩展了第一版内容,并新增生态系统呼吸等相关计算数据,支持综合研究与模型合成。数据以36个制表符分隔文本文件形式提供,配套PDF说明文件,适用于生态与气候研究。引用来源为Restrepo-Coupe等人(2021)。
62 1
|
1月前
|
运维 架构师 安全
二层协议透明传输:让跨域二层协议“无感穿越”多服务商网络
简介:本文详解二层协议透明传输技术,适用于企业网工、运营商及架构师,解决LLDP/LACP/BPDU跨运营商传输难题,实现端到端协议透传,提升网络韧性与运维效率。
|
1月前
|
机器学习/深度学习 数据采集 运维
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
|
3月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
101 4
|
4月前
|
开发者
鸿蒙仓颉语言开发教程:网络请求和数据解析
本文介绍了在仓颉开发语言中实现网络请求的方法,以购物应用的分类列表为例,详细讲解了从权限配置、发起请求到数据解析的全过程。通过示例代码,帮助开发者快速掌握如何在网络请求中处理数据并展示到页面上,减少开发中的摸索成本。
鸿蒙仓颉语言开发教程:网络请求和数据解析
|
6月前
|
安全 网络安全 定位技术
网络通讯技术:HTTP POST协议用于发送本地压缩数据到服务器的方案。
总的来说,无论你是一名网络开发者,还是普通的IT工作人员,理解并掌握POST方法的运用是非常有价值的。它就像一艘快速,稳定,安全的大船,始终为我们在网络海洋中的冒险提供了可靠的支持。
217 22
|
6月前
|
存储 数据库 Python
利用Python获取网络数据的技巧
抓起你的Python魔杖,我们一起进入了网络之海,捕捉那些悠游在网络中的数据鱼,想一想不同的网络资源,是不是都像数不尽的海洋生物,我们要做的,就是像一个优秀的渔民一样,找到他们,把它们捕获,然后用他们制作出种种美味。 **1. 打开魔法之门:请求包** 要抓鱼,首先需要一个鱼网。在Python的世界里,我们就是通过所谓的“请求包”来发送“抓鱼”的请求。requests是Python中常用的发送HTTP请求的库,用它可以方便地与网络上的资源进行交互。所谓的GET,POST,DELETE,还有PUT,这些听起来像偶像歌曲一样的单词,其实就是我们鱼网的不同方式。 简单用法如下: ``` im
136 14