微服务轮子项目(18) -Alibaba Sentinel限流熔断(生产应用)

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,182元/月
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
简介: 微服务轮子项目(18) -Alibaba Sentinel限流熔断(生产应用)

1. 前言

在上一篇博客《微服务轮子项目(17) -Alibaba Sentinel限流熔断(动态规则扩展)》,主要讲解了Sentinel的推拉配置。

Sentinel核心库目前已可用于生产环境,目前除了阿里巴巴以外,也有多家企业在生产环境中使用它们。

生产环境的 Sentinel Dashboard 需要具备下面几个特性:

  • 规则管理及推送,集中管理和推送规则。sentinel-core提供 API 和扩展接口来接收信息。开发者需要根据自己的环境,选取一个可靠的推送规则方式;同时,规则最好在控制台中集中管理。
  • 监控,支持可靠、快速的实时监控和历史监控数据查询。sentinel-core记录秒级的资源运行情况,并且提供 API 来拉取资源运行信息。当机器大于一台以上的时候,可以通过 Dashboard 来拉取,聚合,并且存储这些信息。这个时候,Dashboard 需要有一个存储媒介,来存储历史运行情况。
  • 鉴权,区分用户角色,来进行操作。生产环境下的权限控制是非常重要的,理论上只有管理员等高级用户才有权限去修改应用的规则。
    由于开发者有各自不一样的环境和需求,我们会对“规则管理和推送”,“监控”这两个方面给出建议以及最佳实践;对于鉴权,由于每个开发者的环境都不一样,我们在最佳实践中仅仅使用了简单的认证。开发者可以依循自己的需求,生产环境,选择最适合自己的方式。

2. 规则管理及推送

一般来说,规则的推送有下面三种模式:

推送模式 说明 优点 缺点
始模式 API 将规则推送至客户端并直接更新到内存中,扩展写数据源(WritableDataSource) 简单,无任何依赖 不保证一致性;规则保存在内存中,重启即消失。严重不建议用于生产环境
Pull 模式 扩展写数据源(WritableDataSource), 客户端主动向某个规则管理中心定期轮询拉取规则,这个规则中心可以是 RDBMS、文件 等 简单,无任何依赖;规则持久化 不保证一致性;实时性不保证,拉取过于频繁也可能会有性能问题。
Push 模式 扩展读数据源(ReadableDataSource),规则中心统一推送,客户端通过注册监听器的方式时刻监听变化,比如使用 Nacos、Zookeeper 等配置中心。这种方式有更好的实时性和一致性保证。生产环境下一般采用 push 模式的数据源。 规则持久化;一致性;快速 引入第三方依赖

2.1 原始模式

如果不做任何修改,Dashboard的推送规则方式是通过 API 将规则推送至客户端并直接更新到内存中。

这种做法的好处是简单,无依赖;坏处是应用重启规则就会消失,仅用于简单测试,不能用于生产环境。

2.2 Pull模式

pull 模式的数据源(如本地文件、RDBMS 等)一般是可写入的。使用时需要在客户端注册数据源:将对应的读数据源注册至对应的 RuleManager,将写数据源注册至 transport 的WritableDataSourceRegistry中。以本地文件数据源为例:

public class FileDataSourceInit implements InitFunc {
    @Override
    public void init() throws Exception {
        String flowRulePath = "xxx";
        ReadableDataSource<String, List<FlowRule>> ds = new FileRefreshableDataSource<>(
            flowRulePath, source -> JSON.parseObject(source, new TypeReference<List<FlowRule>>() {})
        );
        // 将可读数据源注册至 FlowRuleManager.
        FlowRuleManager.register2Property(ds.getProperty());
        WritableDataSource<List<FlowRule>> wds = new FileWritableDataSource<>(flowRulePath, this::encodeJson);
        // 将可写数据源注册至 transport 模块的 WritableDataSourceRegistry 中.
        // 这样收到控制台推送的规则时,Sentinel 会先更新到内存,然后将规则写入到文件中.
        WritableDataSourceRegistry.registerFlowDataSource(wds);
    }
    private <T> String encodeJson(T t) {
        return JSON.toJSONString(t);
    }
}

本地文件数据源会定时轮询文件的变更,读取规则。这样我们既可以在应用本地直接修改文件来更新规则,也可以通过 Sentinel控制台推送规则。

过程:

  • 首先 Sentinel 控制台通过 API 将规则推送至客户端并更新到内存中,接着注册的写数据源会将新的规则保存到本地的文件中。使用 pull 模式的数据源时一般不需要对 Sentinel 控制台进行改造。

这种实现方法好处是简单,不引入新的依赖,坏处是无法保证监控数据的一致性

2.3 Push模式

生产环境下一般更常用的是 push 模式的数据源。对于 push 模式的数据源,如远程配置中心(ZooKeeper, Nacos, Apollo等等),推送的操作不应由 Sentinel 客户端进行,而应该经控制台统一进行管理,直接进行推送,数据源仅负责获取配置中心推送的配置并更新到本地。因此推送规则正确做法应该是配置中心控制台/Sentinel 控制台 → 配置中心 → Sentinel 数据源 → Sentinel,而不是经 Sentinel 数据源推送至配置中心。这样的流程就非常清晰了:

我们提供了 ZooKeeper, Apollo, Nacos 等的动态数据源实现。以ZooKeeper为例子,如果要使用第三方的配置中心作为配置管理,您需要做下面的几件事情:

  1. 实现一个公共的ZooKeeper 客户端用于推送规则,在Sentinel控制台配置项中需要指定 ZooKeeper 的地址,启动时即创建ZooKeeper Client
  2. 我们需要针对每个应用(appName),每种规则设置不同的path(可随时修改);或者约定大于配置(如 path的模式统一为/sentinel_rules/{appName}/{ruleType}e.g.sentinel_rules/appA/flowRule)。
  3. 规则配置页需要进行相应的改造,直接针对应用维度进行规则配置;修改同个应用多个资源的规则时可以批量进行推送,也可以分别推送。Sentinel 控制台将规则缓存在内存中(如InMemFlowRuleStore),可以对其进行改造使其支持应用维度的规则缓存(key 为 appName),每次添加/修改/删除规则都先更新内存中的规则缓存,然后需要推送的时候从规则缓存中获取全量规则,然后通过上面实现的 Client 将规则推送到 ZooKeeper 即可。
  4. 应用客户端需要注册对应的读数据源以监听变更。

从 Sentinel 1.4.0 开始,Sentinel 控制台提供DynamicRulePublisher和DynamicRuleProvider接口用于实现应用维度的规则推送和拉取,并提供了相关的示例。Sentinel 提供应用维度规则推送的示例页面(/v2/flow),用户改造控制台对接配置中心后可直接通过 v2 页面推送规则至配置中心。改造详情可参考应用维度规则推送示例

3. 监控

Sentinel会记录资源访问的秒级数据(若没有访问则不进行记录)并保存在本地日志中,具体格式请见秒级监控日志文档。Sentinel 控制台可以通过Sentinel客户端预留的 HTTP API从秒级监控日志中拉取监控数据,并进行聚合。

目前 Sentinel控制台中监控数据聚合后直接存在内存中,未进行持久化,且仅保留最近 5 分钟的监控数据。若需要监控数据持久化的功能,可以自行扩展实现MetricsRepository接口(0.2.0 版本),然后注册成 Spring Bean 并在相应位置通过@Qualifier注解指定对应的bean name 即可。MetricsRepository接口定义了以下功能:

  • save与saveAll:存储对应的监控数据
  • queryByAppAndResourceBetween:查询某段时间内的某个应用的某个资源的监控数据
  • listResourcesOfApp:查询某个应用下的所有资源

其中默认的监控数据类型为MetricEntity,包含应用名称、时间戳、资源名称、异常数、请求通过数、请求拒绝数、平均响应时间等信息。

同时用户可以自行进行扩展,适配 Grafana 等可视化平台,以便将监控数据更好地进行可视化。

对于监控数据的存储,用户需要根据自己的存储精度,来考虑如何存储这些监控数据。

4. 其它

Awesome Sentinel里记录非常多的社区用户的一些扩展和解决方案,也欢迎大家将一些比较好的扩展实现添加进来。

目录
相关文章
|
6月前
|
Java Maven Android开发
微服务——SpringBoot使用归纳——Spring Boot开发环境搭建和项目启动
本文介绍了Spring Boot开发环境的搭建和项目启动流程。主要内容包括:jdk的配置(IDEA、STS/eclipse设置方法)、Spring Boot工程的构建方式(IDEA快速构建、官方构建工具start.spring.io使用)、maven配置(本地maven路径与阿里云镜像设置)以及编码配置(IDEA和eclipse中的编码设置)。通过这些步骤,帮助开发者顺利完成Spring Boot项目的初始化和运行准备。
567 0
微服务——SpringBoot使用归纳——Spring Boot开发环境搭建和项目启动
|
6月前
|
Java 测试技术 微服务
微服务——SpringBoot使用归纳——Spring Boot中的项目属性配置——少量配置信息的情形
本课主要讲解Spring Boot项目中的属性配置方法。在实际开发中,测试与生产环境的配置往往不同,因此不应将配置信息硬编码在代码中,而应使用配置文件管理,如`application.yml`。例如,在微服务架构下,可通过配置文件设置调用其他服务的地址(如订单服务端口8002),并利用`@Value`注解在代码中读取这些配置值。这种方式使项目更灵活,便于后续修改和维护。
96 0
|
6月前
|
Java 微服务 Spring
微服务——SpringBoot使用归纳——Spring Boot使用slf4j进行日志记录——使用Logger在项目中打印日志
本文介绍了如何在项目中使用Logger打印日志。通过SLF4J和Logback,可设置不同日志级别(如DEBUG、INFO、WARN、ERROR)并支持占位符输出动态信息。示例代码展示了日志在控制器中的应用,说明了日志配置对问题排查的重要性。附课程源码下载链接供实践参考。
757 0
|
Java UED Sentinel
微服务守护神:Spring Cloud Sentinel,让你的系统在流量洪峰中稳如磐石!
【8月更文挑战第29天】Spring Cloud Sentinel结合了阿里巴巴Sentinel的流控、降级、熔断和热点规则等特性,为微服务架构下的应用提供了一套完整的流量控制解决方案。它能够有效应对突发流量,保护服务稳定性,避免雪崩效应,确保系统在高并发下健康运行。通过简单的配置和注解即可实现高效流量控制,适用于高并发场景、依赖服务不稳定及资源保护等多种情况,显著提升系统健壮性和用户体验。
248 1
|
消息中间件 监控 开发工具
微服务(三)-实现自动刷新配置(不重启项目情况下)
微服务(三)-实现自动刷新配置(不重启项目情况下)
|
6月前
|
Java 数据库 微服务
微服务——SpringBoot使用归纳——Spring Boot中的项目属性配置——指定项目配置文件
在实际项目中,开发环境和生产环境的配置往往不同。为简化配置切换,可通过创建 `application-dev.yml` 和 `application-pro.yml` 分别管理开发与生产环境配置,如设置不同端口(8001/8002)。在 `application.yml` 中使用 `spring.profiles.active` 指定加载的配置文件,实现环境快速切换。本节还介绍了通过配置类读取参数的方法,适用于微服务场景,提升代码可维护性。课程源码可从 [Gitee](https://gitee.com/eson15/springboot_study) 下载。
234 0
|
6月前
|
Java 微服务 Spring
微服务——SpringBoot使用归纳——Spring Boot中的项目属性配置——少量配置信息的情形
在微服务架构中,随着业务复杂度增加,项目可能需要调用多个微服务。为避免使用`@Value`注解逐一引入配置的繁琐,可通过定义配置类(如`MicroServiceUrl`)并结合`@ConfigurationProperties`注解实现批量管理。此方法需在配置文件中设置微服务地址(如订单、用户、购物车服务),并通过`@Component`将配置类纳入Spring容器。最后,在Controller中通过`@Resource`注入配置类即可便捷使用,提升代码可维护性。
102 0
|
9月前
|
算法 NoSQL Java
微服务架构下的接口限流策略与实践#### 一、
本文旨在探讨微服务架构下,面对高并发请求时如何有效实施接口限流策略,以保障系统稳定性和服务质量。不同于传统的摘要概述,本文将从实际应用场景出发,深入剖析几种主流的限流算法(如令牌桶、漏桶及固定窗口计数器等),通过对比分析它们的优缺点,并结合具体案例,展示如何在Spring Cloud Gateway中集成自定义限流方案,实现动态限流规则调整,为读者提供一套可落地的实践指南。 #### 二、
270 3
|
9月前
|
监控 API 开发者
Sentinel:微服务的全能守护
Sentinel 是阿里巴巴开源的一款轻量级流量控制和熔断降级框架。它通过设置流量控制、熔断降级和系统保护规则,确保微服务在高并发场景下稳定运行。Sentinel 提供丰富的功能、实时监控和灵活的集成方式,适用于各种分布式系统。
1410 0
|
9月前
|
监控 Java Sentinel
Hystrix 与 Sentinel 大比拼:微服务稳定性工具谁更优?
Hystrix 和 Sentinel 是用于微服务架构中保护服务稳定性和可靠性的工具,主要实现服务熔断、限流、降级等功能。Hystrix 侧重于熔断器模式和服务隔离,通过线程池或信号量隔离服务,防止故障扩散;Sentinel 则更全面,涵盖流量控制、熔断降级和系统自适应保护,适用于高并发场景,并提供实时监控和灵活的策略调整。两者设计理念不同,Hystrix 适合中小规模应用,而 Sentinel 更适合大规模高并发系统。
268 0