数据结构 > 算法的时间复杂度(1)

简介: 数据结构 > 算法的时间复杂度(1)

1.算法效率

1.1如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{
  if (N < 3)
    return 1;
  return Fib(N - 1) + Fib(N - 2);
}

斐波那契数列的递归实现方式非常简洁,但是简洁就一定好吗?那如何衡量其好与坏呢?

1.2算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源,因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间,在计算机发展的早期,计算机的存储容量很小,所以对空间复杂度很是在乎;但是经过计算机行业的快速发展,计算机的存储容量已经达到了很高的程度,所以我们如今已经不需要特别关注一个算法的空间复杂度

1.3复杂度在校招中的考察

校园招聘的在笔试算法题和面试中都会考察对复杂度的计算和理解

2.时间复杂度

2.1时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数(数学中的函数式),它定量描述了该算法的运行时间,一个算法执行所耗费的时间,从理论上来讲,是不能被算出来的,只有程序在机器上跑起来才能知道,但是上机测试很明显是有限的,所以才有了时间复杂度这个分析方式

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

我们举个例子:

估算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
  int count = 0;
  for (int i = 0; i < N; ++i)
  {
    for (int j = 0; j < N; ++j)
    {
      ++count;
    }
  }
  for (int k = 0; k < 2 * N; ++k)
  {
    ++count;
  }
  int M = 10;
  while (M--)
  {
    ++count;
  }
  printf("%d\n", count);
}

我们画图分析一下

Func1执行的基本操作次数:

F(N)=N*N+2*N+10

  • N=10                F(N)=130
  • N=100              F(N)=10210
  • N=1000            F(N)=1002010

我们转化一下这个表达式,保留对它影响最大的项,即N*N

那这个表达式就变成了

F(N)=N*N

  • N=10                F(N)=100
  • N=100              F(N)=10000
  • N=1000            F(N)=1000000

我们可以看到,N越大,后两项对结果的影响越小

所以时间复杂度为:O(N^2)

2.2大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号

推导大O阶方法:

  1. 用常数1取代运行时间中的所有加法常数
  2. 在修改后的运行次数函数中,只保留最高阶项
  3. 如果最高阶项存在且不是一,则去除与这个项目相乘的常数(系数),得到的结果就是大O阶

一般情况下,时间复杂度计算时未知数都是用的N

但是也可以是其他的

注意:O(1)并不是代表代码只运行一次,而是运行常数次

2.3特殊情况

有些算法的时间复杂度存在最好、平均和最坏的情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N的数组中搜索一个数据x

  • 最好情况:1次找到
  • 最坏情况:N次找到
  • 平均情况:N/2次找到

当一个算法随着输入不同,时间复杂度也不同,时间复杂度做悲观预期,看最坏的情况

即在这个例子中我们取O(N)

3.总结

那么今天的学习就到这里咯,今天我们学习了算法的时间复杂度的知识

小杜跟各位小伙伴在一起成长,祝我们都能成为大牛!

                                                                                                                               //小杜的成长之路

 

相关文章
|
24天前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
61 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
21天前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
28天前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
20 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
21天前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
31 4
|
28天前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
17 0
数据结构与算法学习十四:常用排序算法总结和对比
|
22天前
|
算法
[数据结构] -- 时间复杂度和空间复杂度
[数据结构] -- 时间复杂度和空间复杂度
13 0
|
27天前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
28天前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
17 0
|
5天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
64 9
|
2天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。