python算法(二)—栈、队列、链表、哈希

简介: python算法(二)—栈、队列、链表、哈希

数据结构:指的是相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成。比如,列表、集合和字典等都是一种数据结构。 数据结构的分类


一、栈

栈:限定仅在表尾进行插入和删除操作的线性表。这一端被称为栈顶,相对地,把另一端称为栈底。

括号匹配问题:给一个字符串,其中包括小括号、中括号、大括号,求该字符串中的括号是否匹配。例如:[(){}[]] 匹配;[]} 不匹配

class Stack:
    def __init__(self):
        self.stack = []
    def push(self, element):  # 进栈
        self.stack.append(element)
    def pop(self):  # 出栈
        return self.stack.pop()
    def get_top(self):  # 获取栈顶元素
        if len(self.stack) > 0:
            return self.stack[-1]
        else:
            return None
    def is_empty(self):
        return len(self.stack) == 0
def brace_match(s):
    match = {')': '(', ']': '[', '}': '{'}
    stack = Stack()
    for ch in s:
        if ch in {'(', '[', '{'}:
            stack.push(ch)
        else:  # ch in {')',']','}'}
            if stack.is_empty():
                return False
            elif stack.get_top() == match[ch]:
                stack.pop()
            else:  # stack.get_top() != match[ch]
                return False
    if stack.is_empty():
        return True
    else:
        return False
s1 = '[]{[]{}()}[]'
s2 = '[)]}'
print(brace_match(s1))
print(brace_match(s2))


二、队列

1、单向队列(Queue)是一个数据集合,仅允许在列表的一端进行插入(队尾),另一端进行删除(队首),按先进先出的性质(First-in ,First-out)。

单向队列的实现方式——环形队列:当队尾指针front==Maxsize+1时,再前进一个位置就自动到0。

队首指针前进1:front=(front+1)%Maxsize

队尾指针前进1:rear=(rear+1)%Maxsize

对空条件:rear=front

队满条件:(rear+1)%Maxsize=front

class Queue:
    def __init__(self,size=100):
        self.queue=[0 for _ in range(size)]
        self.size=size
        self.rear=0 #队尾指针
        self.front=0 #队首指针
    #判断队空
    def is_empty(self):
        return self.rear==self.front
    #判断队满
    def is_filled(self):
        return  (self.rear+1)%self.size==self.front
    #进队
    def push(self,element):
        if not self.is_filled():
            self.rear=(self.rear+1)%self.size
            self.queue[self.rear]=element
        else:
            raise IndexError("Queue is filled")
    #出队
    def pop(self):
        if not self.is_empty():
            self.front=(self.front+1)%self.size
            return self.queue[self.front]
        else:
            raise IndexError("Queue is empty")
q=Queue(5)
for i in range(4):
    q.push(i)
print(q.pop())


2、双向队列

两端都支持进队和出队操作

3、Python队列内置模块

from collections import deque
queue=deque()   #创建队列
queue.append(1) #队尾进队
queue.popleft() #队首出队
queue.appendleft(1)  #双向队列首进队
queue.pop() #双向队列队尾出队

如果队满则会自动出队

from collections import deque
queue=deque([1,2,3,4,5],5)
queue.append(6) 
print(queue.popleft())   # —>输出  2


三、栈和队列的应用——迷宫问题

给一个二维列表来表示迷宫(0表示通道,1表示围墙),给出算法求一条走出迷宫的路径。


1、栈——深度优先搜索(回溯法)

思路:从一个节点开始,任意找下一个能走的点(不妨默认按上-右-下-左),当找不到能走的点时,退回上一个点寻找是否有其他方向的点。用栈存储当前路径。

maze=[
    [1,1,1,1,1,1,1,1,1,1],
    [1,0,0,1,0,0,0,1,0,1],
    [1,0,0,1,0,0,0,1,0,1],
    [1,0,0,0,0,1,1,0,0,1],
    [1,0,1,1,1,0,0,0,0,1],
    [1,0,0,0,1,0,0,0,0,1],
    [1,0,1,0,0,0,1,0,0,1],
    [1,0,1,1,1,0,1,1,0,1],
    [1,1,0,0,0,0,0,0,0,1],
    [1,1,1,1,1,1,1,1,1,1]
]
#(x,y):初始位置,dirs表示上下左右移动的位置
dirs=[
    lambda x,y:(x+1,y),
    lambda x,y:(x-1,y),
    lambda x,y:(x,y-1),
    lambda x,y:(x,y+1)
]
def maze_path(x1,y1,x2,y2):#x1,y1初始位置;x2,y2终点位置
    stack=[]
    stack.append((x1,y1))
    while len(stack)>0:
        curNode = stack[-1]  # 当前的节点位置
        #若走到了终点
        if curNode[0]==x2 and curNode[1]==y2:
            for p in stack:
                print(p)
            return True
        # (x,y)向四个方向移动
        for dir in dirs:
            nextNode=dir(curNode[0],curNode[1])
            #判断下一个节点是否能走通
            if maze[nextNode[0]][nextNode[1]]==0:
                stack.append(nextNode)
                maze[nextNode[0]][nextNode[1]]=2    #用2标记已经走过
                break
        else:
            maze[nextNode[0]][nextNode[1]]=2
            stack.pop() #若走不通,则弹出此节点,以返回上一个节点
    else:
        print("没有路")
        return False
maze_path(1,1,8,8)

2、队列——广度优先搜索

用栈做深度搜索并不能保证路线是最短的,因此用队列来进行。

思路:从一个节点开始,寻找所有接下来能继续走的点,继续不断寻找,直到找到出口。使用队列存储当前正在考虑的点。


2进队,1进队——>3进队,2出队——>4,5进队,3出队——>6,7进队,4,5出队——>……

然后,将初始位置1下标记为-1;下一个位置2是由上一个位置带入的,其下标为0;……


maze=[
    [1,1,1,1,1,1,1,1,1,1],
    [1,0,0,1,0,0,0,1,0,1],
    [1,0,0,1,0,0,0,1,0,1],
    [1,0,0,0,0,1,1,0,0,1],
    [1,0,1,1,1,0,0,0,0,1],
    [1,0,0,0,1,0,0,0,0,1],
    [1,0,1,0,0,0,1,0,0,1],
    [1,0,1,1,1,0,1,1,0,1],
    [1,1,0,0,0,0,0,0,0,1],
    [1,1,1,1,1,1,1,1,1,1]
]
#(x,y):初始位置,dirs表示上下左右移动的位置
dirs=[
    lambda x,y:(x+1,y),
    lambda x,y:(x-1,y),
    lambda x,y:(x,y-1),
    lambda x,y:(x,y+1)
]
from collections import  deque
def print_r(path):
    curNode=path[-1]   #终点的位置
    realpath=[]     #真实路径
    while curNode[2]!=-1:
        realpath.append(curNode[0:2])
        curNode=path[curNode[2]]
    realpath.append(curNode[0:2])   #起点
    realpath.reverse()
    for node in realpath:
        print(node)
def maze_path_queue(x1,y1,x2,y2):
    queue=deque()
    queue.append((x1,y1,-1)) #将初始位置下标记作-1
    path=[]
    while len(queue)>0:
        curNode=queue.popleft() #当前节点的位置
        path.append(curNode)
        if curNode[0] == x2 and curNode[1] == y2:   #终点
            print_r(path)
            return True
        for dir in dirs:
            nextNode=dir(curNode[0],curNode[1])
            if maze[nextNode[0]][nextNode[1]]==0:
                queue.append((nextNode[0],nextNode[1],len(path)-1)) #后续可行节点进队,并记录有哪个节点带进来的
                maze[nextNode[0]][nextNode[1]]=2
    else:
        print("没有路")
        return False
maze_path_queue(1,1,8,8)


四、链表

链表是由一系列节点组成的元素集合。每个节点包含两部分,数据域item和指向下一个节点的指针next。通过节点之间的相互连接,最终串联成一个链表。

class Node:
    def __init__(self,item):
        self.item=item
        self.next=None
a=Node(1)
b=Node(2)
c=Node(3)
a.next=b
b.next=c
print('a.item:',a.item)
print('a.next.item:',a.next.item)

输出:

a.item: 1

a.next.item: 2

1、创建链表

头插法:在头节点处插入,插入的节点将成为新的头节点

尾插法:在尾节点处插入,插入的节点将成为新的尾节点

class Node:
    def __init__(self,item):
        self.item=item
        self.next=None
def creat_linklist_head(li):    #头插法
    head=Node(li[0])
    for element in li[1:]:
        node=Node(element)
        node.next=head
        head=node
    return head
def creat_linklist_tail(li):    #尾插法
    head=Node(li[0])
    tail=head
    for element in li[1:]:
        node=Node(element)
        tail.next=node
        tail=node
    return head
def print_linklist(lk):   #链表的遍历
    while lk:
        print(lk.item,end=',')
        lk=lk.next
lk1=creat_linklist_head([1,2,3])
print_linklist(lk1)  #输出3,2,1
lk2=creat_linklist_tail([1,2,3])
print_linklist(lk2) #输出1,2,3

2、节点的插入、删除

插入:4先与2相连,然后1与4相连

删除:1与2相连,再删除43、双链表每个节点有两个指针:一个指向后一个节点,另一个指向前一个节点。

class Node:
    def __init__(self,item):
        self.item=item
        self.next=None
        self.prior=None

插入:

删除:

4、复杂度分析


顺序表(列表、数组)
链表
按元素值查找 O(n) O(n)
按下标查找 O(1) O(n)
在某元素后插入 O(n) O(1)
删除某元素 O(n) O(1)


五、哈希表

哈希表是一个通过哈希函数来计算数据存储位置的数据结构,通常支持如下操作:

  • insert(key,value):插入键值对(key,value)
  • get(key):如果存在键为key的键值则返回其value,否则返回空值
  • delete(key):删除键为key的键值对

1、创建哈希表

class LinkList:  # 定义一个链表类,可支持迭代、插入、寻找、输出为字符串
    class Node:
        def __init__(self, item=None):
            self.item = item
            self.next = None
    class LinkListIterator:  # 设置成可迭代类
        def __init__(self, node):
            self.node = node
        def __next__(self):
            if self.node:
                cur_node = self.node
                self.node = cur_node.next
                return cur_node.item
            else:
                raise StopIteration
        def __iter__(self):
            return self
    def __init__(self, iterable=None):
        self.head = None
        self.tail = None
        if iterable:
            self.extend(iterable)
    def append(self, obj):
        s = LinkList.Node(obj)
        if not self.head:  # 头节点为空时
            self.head = s
            self.tail = s
        else:
            self.tail.next = s
            self.tail = s
    def extend(self, iterable):
        for obj in iterable:
            self.append(obj)
    def find(self, obj):
        for n in self:
            if n == obj:
                return True
            else:
                return False
    def __iter__(self):  # 迭代
        return self.LinkListIterator(self.head)
    def __repr__(self):  # 转换成字符串
        return "<<" + ",".join(map(str, self)) + ">>"
class HashTable:
    def __init__(self, size=101):
        self.size = size
        self.T = [LinkList() for i in range(self.size)]
    def h(self, k):
        return k % self.size
    def find(self, k):
        i = self.h(k)
        return self.T[i].find(k)
    def insert(self, k):
        i = self.h(k)
        if self.find(k):
            print("Duplicated Insert")
        else:
            self.T[i].append(k)
ht = HashTable()
ht.insert(0)
ht.insert(1)
ht.insert(3)
ht.insert(102)
ht.insert(508)
print(",".join(map(str, ht.T)))
print(ht.find(3))


目录
相关文章
|
1月前
|
存储 算法 搜索推荐
探索常见数据结构:数组、链表、栈、队列、树和图
探索常见数据结构:数组、链表、栈、队列、树和图
103 64
|
1月前
|
缓存 算法 Java
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
这篇文章详细介绍了Java虚拟机(JVM)中的垃圾回收机制,包括垃圾的定义、垃圾回收算法、堆内存的逻辑分区、对象的内存分配和回收过程,以及不同垃圾回收器的工作原理和参数设置。
65 4
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
|
1月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
31 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
22天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
存储 缓存 Java
深度解密 Python 虚拟机的执行环境:栈帧对象
深度解密 Python 虚拟机的执行环境:栈帧对象
62 13
|
1月前
|
算法
数据结构与算法二:栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式
这篇文章讲解了栈的基本概念及其应用,并详细介绍了中缀表达式转换为后缀表达式的算法和实现步骤。
47 3
|
1月前
|
存储 算法 定位技术
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
这篇文章主要介绍了稀疏数组和队列的概念、应用实例以及如何使用数组模拟队列和环形队列的实现方法。
21 0
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
|
2月前
|
存储 算法 前端开发
深入理解操作系统:进程调度与优先级队列算法
【9月更文挑战第25天】在操作系统的复杂世界中,进程调度是维持系统稳定运行的核心机制之一。本文将深入探讨进程调度的基本概念,分析不同的进程调度算法,并着重介绍优先级队列算法的原理和实现。通过简洁明了的语言,我们将一起探索如何优化进程调度,提高操作系统的效率和响应速度。无论你是计算机科学的初学者还是希望深化理解的专业人士,这篇文章都将为你提供有价值的见解。
|
1月前
|
算法 安全 Go
Python与Go语言中的哈希算法实现及对比分析
Python与Go语言中的哈希算法实现及对比分析
40 0
|
1月前
|
算法 C++
【算法单调栈】 矩形牛棚(C/C++)
【算法单调栈】 矩形牛棚(C/C++)