线程池的7种创建方式(一)

简介: 线程池的7种创建方式

线程池使用

线程池的创建方法总共有 7 种,但总体来说可分为 2 类:

  1. 一类是通过 ThreadPoolExecutor 创建的线程池;
  2. 另一个类是通过 Executors 创建的线程池。

线程池的创建方式总共包含以下 7 种(其中 6 种是通过 Executors 创建的,1 种是通过 ThreadPoolExecutor 创建的):

  1. Executors.newFixedThreadPool:创建一个固定大小的线程池,可控制并发的线程数,超出的线程会在队列中等待;
  2. Executors.newCachedThreadPool:创建一个可缓存的线程池,若线程数超过处理所需,缓存一段时间后会回收,若线程数不够,则新建线程;
  3. Executors.newSingleThreadExecutor:创建单个线程数的线程池,它可以保证先进先出的执行顺序;
  4. Executors.newScheduledThreadPool:创建一个可以执行延迟任务的线程池;
  5. Executors.newSingleThreadScheduledExecutor:创建一个单线程的可以执行延迟任务的线程池;
  6. Executors.newWorkStealingPool:创建一个抢占式执行的线程池(任务执行顺序不确定)【JDK 1.8 添加】。
  7. ThreadPoolExecutor:最原始的创建线程池的方式,它包含了 7 个参数可供设置,后面会详细讲。

单线程池的意义

从以上代码可以看出 newSingleThreadExecutor 和 newSingleThreadScheduledExecutor 创建的都是单线程池,那么单线程池的意义是什么呢?

虽然是单线程池,但提供了工作队列,生命周期管理,工作线程维护等功能。

FixedThreadPool

创建一个固定大小的线程池,可控制并发的线程数,超出的线程会在队列中等待。

public static void fixedThreadPool() {
    // 创建 2 个数据级的线程池
    ExecutorService threadPool = Executors.newFixedThreadPool(2);
    // 创建任务
    Runnable runnable = new Runnable() {
        @Override
        public void run() {
            System.out.println("任务被执行,线程:" + Thread.currentThread().getName());
        }
    };
    // 线程池执行任务(一次添加 4 个任务)
    // 执行任务的方法有两种:submit 和 execute
    threadPool.submit(runnable);  // 执行方式 1:submit
    threadPool.execute(runnable); // 执行方式 2:execute
    threadPool.execute(runnable);
    threadPool.execute(runnable);
}

简化如下:

public static void fixedThreadPool() {
    // 创建线程池
    ExecutorService threadPool = Executors.newFixedThreadPool(2);
    // 执行任务
    threadPool.execute(() -> {
        System.out.println("任务被执行,线程:" + Thread.currentThread().getName());
    });
}

CachedThreadPool

创建一个可缓存的线程池,若线程数超过处理所需,缓存一段时间后会回收,若线程数不够,则新建线程。

public static void cachedThreadPool() {
    // 创建线程池
    ExecutorService threadPool = Executors.newCachedThreadPool();
    // 执行任务
    for (int i = 0; i < 10; i++) {
        threadPool.execute(() -> {
            System.out.println("任务被执行,线程:" + Thread.currentThread().getName());
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
            }
        });
    }
}

线程池创建了 10 个线程来执行相应的任务

SingleThreadExecutor

创建单个线程数的线程池,它可以保证先进先出的执行顺序。

public static void singleThreadExecutor() {
    // 创建线程池
    ExecutorService threadPool = Executors.newSingleThreadExecutor();
    // 执行任务
    for (int i = 0; i < 10; i++) {
        final int index = i;
        threadPool.execute(() -> {
            System.out.println(index + ":任务被执行");
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
            }
        });
    }
}

ScheduledThreadPool

创建一个可以执行延迟任务的线程池。

public static void scheduledThreadPool() {
    // 创建线程池
    ScheduledExecutorService threadPool = Executors.newScheduledThreadPool(5);
    // 添加定时执行任务(1s 后执行)
    System.out.println("添加任务,时间:" + new Date());
    threadPool.schedule(() -> {
        System.out.println("任务被执行,时间:" + new Date());
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
        }
    }, 1, TimeUnit.SECONDS);
}

任务在 1 秒之后被执行

SingleThreadScheduledExecutor

创建一个单线程的可以执行延迟任务的线程池。

public static void SingleThreadScheduledExecutor() {
    // 创建线程池
    ScheduledExecutorService threadPool = Executors.newSingleThreadScheduledExecutor();
    // 添加定时执行任务(2s 后执行)
    System.out.println("添加任务,时间:" + new Date());
    threadPool.schedule(() -> {
        System.out.println("任务被执行,时间:" + new Date());
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
        }
    }, 2, TimeUnit.SECONDS);
}

任务在 2 秒之后被执行

newWorkStealingPool

创建一个抢占式执行的线程池(任务执行顺序不确定),注意此方法只有在 JDK 1.8+ 版本中才能使用

public static void workStealingPool() {
    // 创建线程池
    ExecutorService threadPool = Executors.newWorkStealingPool();
    // 执行任务
    for (int i = 0; i < 10; i++) {
        final int index = i;
        threadPool.execute(() -> {
            System.out.println(index + " 被执行,线程名:" + Thread.currentThread().getName());
        });
    }
    // 确保任务执行完成
    while (!threadPool.isTerminated()) {
    }
}

任务的执行顺序是不确定的,因为它是抢占式执行的

ThreadPoolExecutor

最原始的创建线程池的方式,它包含了 7 个参数可供设置

public static void myThreadPoolExecutor() {
    // 创建线程池
    ThreadPoolExecutor threadPool = new ThreadPoolExecutor(5, 10, 100, TimeUnit.SECONDS, new LinkedBlockingQueue<>(10));
    // 执行任务
    for (int i = 0; i < 10; i++) {
        final int index = i;
        threadPool.execute(() -> {
            System.out.println(index + " 被执行,线程名:" + Thread.currentThread().getName());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
    }
}

ThreadPoolExecutor 参数介绍

ThreadPoolExecutor 最多可以设置 7 个参数:

public ThreadPoolExecutor(int corePoolSize,
                           int maximumPoolSize,
                           long keepAliveTime,
                           TimeUnit unit,
                           BlockingQueue<Runnable> workQueue,
                           ThreadFactory threadFactory,
                           RejectedExecutionHandler handler) {
     // 省略...
 }


相关文章
|
存储 算法 Java
线程池最佳线程数量到底要如何配置?
线程池最佳线程数量到底要如何配置?
线程池最佳线程数量到底要如何配置?
|
19天前
|
安全 Java 调度
线程的四种创建方式
【10月更文挑战第22天】在多线程编程中,还需要注意线程安全、死锁等问题,以确保程序的正确性和稳定性。通过合理地运用线程创建方式和相关技术,我们可以充分发挥多线程的优势,提高程序的性能和并发处理能力。
|
2月前
|
缓存 Java
创建一个可缓存线程池
创建一个可缓存线程池
32 4
|
3月前
|
存储 Java 调度
线程池的概述和创建
线程池的创建,构造器需要分别传入什么参数
线程池的概述和创建
|
3月前
|
缓存 Java
异步&线程池 线程池的七大参数 初始化线程的4种方式 【上篇】
这篇文章详细介绍了Java中线程的四种初始化方式,包括继承Thread类、实现Runnable接口、实现Callable接口与FutureTask结合使用,以及使用线程池。同时,还深入探讨了线程池的七大参数及其作用,解释了线程池的运行流程,并列举了四种常见的线程池类型。最后,阐述了在开发中使用线程池的原因,如降低资源消耗、提高响应速度和增强线程的可管理性。
异步&线程池 线程池的七大参数 初始化线程的4种方式 【上篇】
|
5月前
|
存储 缓存 Java
如何创建一个线程池,为什么不推荐使用Executors去创建呢?
【6月更文挑战第2天】如何创建一个线程池,为什么不推荐使用Executors去创建呢?
40 1
|
6月前
|
存储 Java
什么是线程池,线程池的状态,线程池的用法示例
什么是线程池,线程池的状态,线程池的用法示例
|
存储 安全 Java
线程池的7种创建方式(二)
线程池的7种创建方式
|
Java
创建多线程的方式四:使用线程池
创建多线程的方式四:使用线程池
58 0
|
C++
线程的2种创建方式
当一个类继承了Thread类,该类就可以当作线程使用。 run方法其实是一个普通方法,是Runnable接口的一个方法。 Thread类也是进行了重写。 真正实现多线程的start方法中的start0方法。 这是一个本地native方法,由c/c++实现。
84 0