线程池的7种创建方式(一)

简介: 线程池的7种创建方式

线程池使用

线程池的创建方法总共有 7 种,但总体来说可分为 2 类:

  1. 一类是通过 ThreadPoolExecutor 创建的线程池;
  2. 另一个类是通过 Executors 创建的线程池。

线程池的创建方式总共包含以下 7 种(其中 6 种是通过 Executors 创建的,1 种是通过 ThreadPoolExecutor 创建的):

  1. Executors.newFixedThreadPool:创建一个固定大小的线程池,可控制并发的线程数,超出的线程会在队列中等待;
  2. Executors.newCachedThreadPool:创建一个可缓存的线程池,若线程数超过处理所需,缓存一段时间后会回收,若线程数不够,则新建线程;
  3. Executors.newSingleThreadExecutor:创建单个线程数的线程池,它可以保证先进先出的执行顺序;
  4. Executors.newScheduledThreadPool:创建一个可以执行延迟任务的线程池;
  5. Executors.newSingleThreadScheduledExecutor:创建一个单线程的可以执行延迟任务的线程池;
  6. Executors.newWorkStealingPool:创建一个抢占式执行的线程池(任务执行顺序不确定)【JDK 1.8 添加】。
  7. ThreadPoolExecutor:最原始的创建线程池的方式,它包含了 7 个参数可供设置,后面会详细讲。

单线程池的意义

从以上代码可以看出 newSingleThreadExecutor 和 newSingleThreadScheduledExecutor 创建的都是单线程池,那么单线程池的意义是什么呢?

虽然是单线程池,但提供了工作队列,生命周期管理,工作线程维护等功能。

FixedThreadPool

创建一个固定大小的线程池,可控制并发的线程数,超出的线程会在队列中等待。

public static void fixedThreadPool() {
    // 创建 2 个数据级的线程池
    ExecutorService threadPool = Executors.newFixedThreadPool(2);
    // 创建任务
    Runnable runnable = new Runnable() {
        @Override
        public void run() {
            System.out.println("任务被执行,线程:" + Thread.currentThread().getName());
        }
    };
    // 线程池执行任务(一次添加 4 个任务)
    // 执行任务的方法有两种:submit 和 execute
    threadPool.submit(runnable);  // 执行方式 1:submit
    threadPool.execute(runnable); // 执行方式 2:execute
    threadPool.execute(runnable);
    threadPool.execute(runnable);
}

简化如下:

public static void fixedThreadPool() {
    // 创建线程池
    ExecutorService threadPool = Executors.newFixedThreadPool(2);
    // 执行任务
    threadPool.execute(() -> {
        System.out.println("任务被执行,线程:" + Thread.currentThread().getName());
    });
}

CachedThreadPool

创建一个可缓存的线程池,若线程数超过处理所需,缓存一段时间后会回收,若线程数不够,则新建线程。

public static void cachedThreadPool() {
    // 创建线程池
    ExecutorService threadPool = Executors.newCachedThreadPool();
    // 执行任务
    for (int i = 0; i < 10; i++) {
        threadPool.execute(() -> {
            System.out.println("任务被执行,线程:" + Thread.currentThread().getName());
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
            }
        });
    }
}

线程池创建了 10 个线程来执行相应的任务

SingleThreadExecutor

创建单个线程数的线程池,它可以保证先进先出的执行顺序。

public static void singleThreadExecutor() {
    // 创建线程池
    ExecutorService threadPool = Executors.newSingleThreadExecutor();
    // 执行任务
    for (int i = 0; i < 10; i++) {
        final int index = i;
        threadPool.execute(() -> {
            System.out.println(index + ":任务被执行");
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
            }
        });
    }
}

ScheduledThreadPool

创建一个可以执行延迟任务的线程池。

public static void scheduledThreadPool() {
    // 创建线程池
    ScheduledExecutorService threadPool = Executors.newScheduledThreadPool(5);
    // 添加定时执行任务(1s 后执行)
    System.out.println("添加任务,时间:" + new Date());
    threadPool.schedule(() -> {
        System.out.println("任务被执行,时间:" + new Date());
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
        }
    }, 1, TimeUnit.SECONDS);
}

任务在 1 秒之后被执行

SingleThreadScheduledExecutor

创建一个单线程的可以执行延迟任务的线程池。

public static void SingleThreadScheduledExecutor() {
    // 创建线程池
    ScheduledExecutorService threadPool = Executors.newSingleThreadScheduledExecutor();
    // 添加定时执行任务(2s 后执行)
    System.out.println("添加任务,时间:" + new Date());
    threadPool.schedule(() -> {
        System.out.println("任务被执行,时间:" + new Date());
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
        }
    }, 2, TimeUnit.SECONDS);
}

任务在 2 秒之后被执行

newWorkStealingPool

创建一个抢占式执行的线程池(任务执行顺序不确定),注意此方法只有在 JDK 1.8+ 版本中才能使用

public static void workStealingPool() {
    // 创建线程池
    ExecutorService threadPool = Executors.newWorkStealingPool();
    // 执行任务
    for (int i = 0; i < 10; i++) {
        final int index = i;
        threadPool.execute(() -> {
            System.out.println(index + " 被执行,线程名:" + Thread.currentThread().getName());
        });
    }
    // 确保任务执行完成
    while (!threadPool.isTerminated()) {
    }
}

任务的执行顺序是不确定的,因为它是抢占式执行的

ThreadPoolExecutor

最原始的创建线程池的方式,它包含了 7 个参数可供设置

public static void myThreadPoolExecutor() {
    // 创建线程池
    ThreadPoolExecutor threadPool = new ThreadPoolExecutor(5, 10, 100, TimeUnit.SECONDS, new LinkedBlockingQueue<>(10));
    // 执行任务
    for (int i = 0; i < 10; i++) {
        final int index = i;
        threadPool.execute(() -> {
            System.out.println(index + " 被执行,线程名:" + Thread.currentThread().getName());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
    }
}

ThreadPoolExecutor 参数介绍

ThreadPoolExecutor 最多可以设置 7 个参数:

public ThreadPoolExecutor(int corePoolSize,
                           int maximumPoolSize,
                           long keepAliveTime,
                           TimeUnit unit,
                           BlockingQueue<Runnable> workQueue,
                           ThreadFactory threadFactory,
                           RejectedExecutionHandler handler) {
     // 省略...
 }


相关文章
|
数据可视化 前端开发 关系型数据库
基于Mybatis-Plus实现Geometry字段在PostGis空间数据库中的使用
本文讲解在mybatis-plus中操作geometry空间字段,同时实现查询和插入操作​。通过geojson,结合前端可视化组件即可完成​矢量数据的空间可视化。
3022 0
基于Mybatis-Plus实现Geometry字段在PostGis空间数据库中的使用
|
前端开发 网络协议 Dubbo
超详细Netty入门,看这篇就够了!
本文主要讲述Netty框架的一些特性以及重要组件,希望看完之后能对Netty框架有一个比较直观的感受,希望能帮助读者快速入门Netty,减少一些弯路。
90858 32
超详细Netty入门,看这篇就够了!
|
机器学习/深度学习 数据可视化 数据挖掘
初学者该如何选择最适合自己的图像分类模型
初学者该如何选择最适合自己的图像分类模型
1730 0
初学者该如何选择最适合自己的图像分类模型
|
6月前
|
XML Java 数据格式
HUTOOL-Word生成-Word07Writer
HUTOOL-Word生成-Word07Writer
|
11月前
|
SQL 存储 安全
深入浅出:SQL数据库建表全过程详解
数据库是现代信息系统的核心组成部分,而SQL(结构化查询语言)则是管理和操作数据库的最主要工具之一。在创建数据库的过程中,建表是非常重要的一步,因为它决定了数据的存储结构和方式。本文将详细介绍SQL数据库建表的全过程,帮助读者更好地理解并掌握这一关键技术。一、了解数据库与表的基本概念在深入SQL数据
520 1
|
存储 Java
java 服务 JVM 参数设置配置
java 服务 JVM 参数设置配置
289 3
|
存储 设计模式 Java
一文详解Servlet 看这篇就够了
首先,对我们编程者来说,Servlet就是我们写出来的Java类,只是我们需要按照Servlet规定的规范写。
1885 1
|
机器学习/深度学习 人工智能 运维
智能化运维:AI在故障预测与自愈系统中的应用
【6月更文挑战第13天】本文探讨了人工智能技术在现代IT运维领域的应用,着重分析了AI如何通过数据分析和机器学习算法实现故障预测和自动化修复。文章将揭示智能运维系统的工作机制,以及它如何帮助企业减少停机时间,提高服务稳定性,并最终推动业务连续性和增长。
|
存储 关系型数据库 MySQL
【MySQL】存储引擎简介、存储引擎特点、存储引擎区别
【MySQL】存储引擎简介、存储引擎特点、存储引擎区别
301 2
|
运维 负载均衡 Java
nacos常见问题之单机nacos2.2.3线程池异常如何解决
Nacos是阿里云开源的服务发现和配置管理平台,用于构建动态微服务应用架构;本汇总针对Nacos在实际应用中用户常遇到的问题进行了归纳和解答,旨在帮助开发者和运维人员高效解决使用Nacos时的各类疑难杂症。

热门文章

最新文章