【1】 CAP
C(Consistency)强一致性、A(Availability)高可用性和P(Partition tolerance)分区容错性。
CA: 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP: 满足一致性、分区容错性的系统,通常性能不是特别高。
AP: 满足可用性、分区容错性的系统,通常可能对一致性要求低一些。
① C(Consistency)强一致性
在分布式环境下,一致性是指数据在多个副本之间能否保持一致的特性。在一致性的需求下,当一个系统在数据一致的状态下执行更新操作后,应该保证系统的数据仍然处于一致的状态。
对于一个将数据副本分布在不同分布式节点上的系统来说,如果对第一个节点的数据进 行了更新操作并且更新成功后,却没有使得第二个节点上的数据得到相应的更新。于是在对第二个节点的数据进行读取操作时,获取的依然是老数据(或称为脏数 据),这就是典型的分布式数据不一致的情况。
在分布式系统中,如果能够做到针对一个数据项的更新操作执行成功后,所有的用户都可以读取到其最新的值,那么 这样的系统就被认为具有强一致性。
② A(Availability)高可用性
可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。这里的重点是"有限时间内"和"返回结果"。
"有限时间内"是指,对于用户的一个操作请求,系统必须能够在指定的时间内返回对 应的处理结果,如果超过了这个时间范围,那么系统就被认为是不可用的。另外,"有限的时间内"是指系统设计之初就设计好的运行指标,通常不同系统之间有很 大的不同,无论如何,对于用户请求,系统必须存在一个合理的响应时间,否则用户便会对系统感到失望。
"返回结果"是可用性的另一个非常重要的指标,它要求系统在完成对用户请求的处理后,返回一个正常的响应结果。正常的响应结果通常能够明确地反映出队请求的处理结果,即成功或失败,而不是一个让用户感到困惑的返回结果。
③ P(Partition tolerance)分区容错性
分区容错性约束了一个分布式系统具有如下特性:分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障。
网络分区是指在分布式系统中,不同的节点分布在不同的子网络(机房或异地网络) 中,由于一些特殊的原因导致这些子网络出现网络不连通的状况,但各个子网络的内部网络是正常的,从而导致整个系统的网络环境被切分成了若干个孤立的区域。 需要注意的是,组成一个分布式系统的每个节点的加入与退出都可以看作是一个特殊的网络分区。
既然一个分布式系统无法同时满足一致性、可用性、分区容错性三个特点,所以我们就需要抛弃一样:
需要明确的一点是,对于一个分布式系统而言,分区容错性是一个最基本的要求。因为 既然是一个分布式系统,那么分布式系统中的组件必然需要被部署到不同的节点,否则也就无所谓分布式系统了,因此必然出现子网络。
而对于分布式系统而言,网络问题又是一个必定会出现的异常情况,因此分区容错性也就成为了一个分布式系统必然需要面对和解决的问题。因此系统架构师往往需要把精力花在如何根据业务 特点在C(一致性)和A(可用性)之间寻求平衡。
④ 取舍策略
① CA without P
如果不要求P(不允许分区),则C(强一致性)和A(可用性)是可以保证的。但放弃
P的同时也就意味着放弃了系统的扩展性,也就是分布式节点受限,没办法部署子节点,这是违背分布式系统设计的初衷的。
传统的关系型数据库RDBMS:Oracle、MySQL就是CA。
② CP without A
如果不要求A(可用),相当于每个请求都需要在服务器之间保持强一致,而P(分
区)会导致同步时间无限延长(也就是等待数据同步完才能正常访问服务),一旦发生网络故障或者消息丢失等情况,就要牺牲用户的体验,等待所有数据全部一致了之后再让用户访问系统。
设计成CP的系统其实不少,最典型的就是分布式数据库,如Redis、HBase等。对于这些分布式数据库来说,数据的一致性是最基本的要求,因为如果连这个标准都达不到,那么直接采用关系型数据库就好,没必要再浪费资源来部署分布式数据库。
③ AP wihtout C
要高可用并允许分区,则需放弃一致性。一旦分区发生,节点之间可能会失去联系,
为了高可用,每个节点只能用本地数据提供服务,而这样会导致全局数据的不一致性。
典型的应用就如某米的抢购手机场景,可能前几秒你浏览商品的时候页面提示是有库存的,当你选择完商品准备下单的时候,系统提示你下单失败,商品已售完。
这其实就是先在 A(可用性)方面保证系统可以正常的服务,然后在数据的一致性方面做了些牺牲,虽然多少会影响一些用户体验,但也不至于造成用户购物流程的严重阻塞。
⑤ 强一致性、弱一致性和最终一致性
① 强一致性
这种一致性级别是最符合用户直觉的,它要求系统写入什么,读出来的也会是什么,用户体验好,但实现起来往往对系统的性能影响大
② 弱一致性
这种一致性级别约束了系统在写入成功后,不承诺立即可以读到写入的值,也不久承诺多久之后数据能够达到一致,但会尽可能地保证到某个时间级别(比如秒级别)后,数据能够达到一致状态
③ 最终一致性
最终一致性是弱一致性的一个特例,系统会保证在一定时间内,能够达到一个数据一致的状态。这里之所以将最终一致性单独提出来,是因为它是弱一致性中非常推崇的一种一致性模型,也是业界在大型分布式系统的数据一致性上比较推崇的模型
【2】 BASE理论
BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的缩写。BASE理论是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结, 是基于CAP定理逐步演化而来的。BASE理论的核心思想是:即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。接下来看一下BASE中的三要素。
① 基本可用
基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性----注意,这绝不等价于系统不可用。比如:
响应时间上的损失。正常情况下,一个在线搜索引擎需要在0.5秒之内返回给用户相应的查询结果,但由于出现故障,查询结果的响应时间增加了1~2秒
系统功能上的损失:正常情况下,在一个电子商务网站上进行购物的时候,消费者几乎能够顺利完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面
② 软状态
软状态指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时
③ 最终一致性
最终一致性强调的是所有的数据副本,在经过一段时间的同步之后,最终都能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。
亚马逊首席技术官Werner Vogels在于2008年发表的一篇文章中对最终一致性进行了非常详细的介绍。他认为最终一致性时一种特殊的弱一致性:系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问都能够获取到最新的值。同时,在没有发生故障的前提下,数据达到一致状态的时间延迟,取决于网络延迟,系统负载和数据复制方案设计等因素。
在实际工程实践中,最终一致性存在以下五类主要变种。
因果一致性:
因果一致性是指,如果进程A在更新完某个数据项后通知了进程B,那么进程B之后对该数据项的访问都应该能够获取到进程A更新后的最新值,并且如果进程B要对该数据项进行更新操作的话,务必基于进程A更新后的最新值,即不能发生丢失更新情况。与此同时,与进程A无因果关系的进程C的数据访问则没有这样的限制。
读己之所写:
读己之所写是指,进程A更新一个数据项之后,它自己总是能够访问到更新过的最新值,而不会看到旧值。也就是说,对于单个数据获取者而言,其读取到的数据一定不会比自己上次写入的值旧。因此,读己之所写也可以看作是一种特殊的因果一致性。
会话一致性:
会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现“读己之所
写”的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。
单调读一致性:
单调读一致性是指如果一个进程从系统中读取出一个数据项的某个值后,那么系统对于该进程后续的任何数据
访问都不应该返回更旧的值。
单调写一致性:
单调写一致性是指,一个系统需要能够保证来自同一个进程的写操作被顺序地执行。
以上就是最终一致性的五类常见的变种,在系统实践中,可以将其中的若干个变种互相结合起来,以构建一个具有最终一致性的分布式系统。
事实上,最终一致性并不是只有那些大型分布式系统才设计的特性,许多现代的关系型数据库都采用了最终一致性模型。在现代关系型数据库中,大多都会采用同步和异步方式来实现主备数据复制技术。
在同步方式中,数据的复制过程通常是更新事务的一部分,因此在事务完成后,主备数据库的数据就会达到一致。
而在异步方式中,备库的更新往往存在延时,这取决于事务日志在主备数据库之间传输的时间长短,如果传输时间过长或者甚至在日志传输过程中出现异常导致无法及时将事务应用到备库上,那么很显然,从备库中读取的的数据将是旧的,因此就出现了不一致的情况。
当然,无论是采用多次重试还是人为数据订正,关系型数据库还是能搞保证最终数据达到一致——这就是系统提供最终一致性保证的经典案例。
总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统的事务ACID特性是相反的,它完全不同于ACID的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。
但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性和BASE理论往往又会结合在一起。