分布式系列教程(36) -ElasticSearch集群原理

简介: 分布式系列教程(36) -ElasticSearch集群原理

1.引言

ES是一个分布式全文检索框架,隐藏了复杂的处理机制,核心内容分片机制集群发现分片负载均衡请求路由

1.1 ES基本概念名词

Cluster:

  • 代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的。es的一个概念就是去中心化,字面上理解就是无中心节点,这是对于集群外部来说的,因为从外部来看es集群,在逻辑上是个整体,你与任何一个节点的通信和与整个es集群通信是等价的。

Shards:

  • 代表索引分片,es可以把一个完整的索引分成多个分片,这样的好处是可以把一个大的索引拆分成多个,分布到不同的节点上,构成分布式搜索。分片的数量只能在索引创建前指定,并且索引创建后不能更改

Replicas:

  • 代表索引副本,es可以设置多个索引的副本,副本的作用一是提高系统的容错性,当某个节点某个分片损坏或丢失时可以从副本中恢复,二是提高es的查询效率,es会自动对搜索请求进行负载均衡

Recovery:

  • 代表数据恢复或叫数据重新分布,es在有节点加入或退出时会根据机器的负载对索引分片进行重新分配,挂掉的节点重新启动时也会进行数据恢复。

1.2 ES为什么要实现集群

ES集群中索引可能由多个分片构成,并且每个分片可以拥有多个副本。

通过将一个单独的索引分为多个分片,我们可以处理不能在一个单一的服务器上面运行的大型索引,简单的说就是索引的大小过大,导致效率问题。

不能运行的原因可能是内存也可能是存储。由于每个分片可以有多个副本,通过将副本分配到多个服务器,可以提高查询的负载能力。

2. ES集群核心原理分析

每个索引会被分成多个分片shards进行存储,默认创建索引是分配5个分片进行存储。每个分片都会分布式部署在多个不同的节点上进行部署,该分片成为primary shards。(注意:索引的主分片primary shards定义好后,后面不能做修改。

为了实现高可用数据的高可用,主分片可以有对应的备分片replics shards,replic shards分片承载了负责容错、以及请求的负载均衡。(注意: 每一个主分片为了实现高可用,都会有自己对应的备分片,主分片对应的备分片不能存放同一台服务器上。主分片primary shards可以和其他replics shards存放在同一个node节点上。)

每一个主分片为了实现高可用,都会有自己对应的备份分片,主分片对应的备分片不能存放在同一台服务器上,如下图:

2.1 总分片数计算

注意:主分片对应的备分片不能存放同一台服务器上

如果主分片为3、备分片为1 ,每个主分片对应1个备分片,3个主分片放在3个节点(服务器)的情况下:

  • 总分片数 = 3(仓库数)*1(主分片)+ 1(备份分片)*3 = 6个

如果主分片为3、备分片为2 ,每个主分片对应2个备分片,3个主分片放在3个节点(服务器)的情况下:

  • 总分片数 = 3(仓库数)*1(主分片)+ 2(备份分片)*3 = 9个

注意:因为主分片为2,增加一台服务节点,当前服务节点为3台,又因为主分片不能修改,那么只能提高备份分片了。

2.2 数据路由

当客户端发起创建document的时候,es需要确定这个document放在该index哪个shard上。这个过程就是数据路由。

路由算法:shard = hash(routing) % number_of_primary_shards

为什么ES索引主分片数量不能改?

答:如果number_of_primary_shards在查询的时候取余发生的变化,无法获取到该数据。

3.总结


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
3月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
697 1
|
2月前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
2月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
143 4
|
3月前
|
缓存 监控 Java
Elasticsearch集群JVM调优
Elasticsearch集群JVM调优
99 5
|
2月前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
89 0
|
3月前
|
存储 缓存 监控
Elasticsearch集群JVM调优堆外内存
Elasticsearch集群JVM调优堆外内存
75 1
|
3月前
|
监控 Java 测试技术
Elasticsearch集群JVM调优垃圾回收器的选择
Elasticsearch集群JVM调优垃圾回收器的选择
110 1
|
3月前
|
监控 安全 网络安全
Elasticsearch集群的网络设置
Elasticsearch集群的网络设置
94 3
|
3月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
116 5
|
4月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
439 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。