深入了解Linux内核跟踪:ftrace基础教程

简介: 深入了解Linux内核跟踪:ftrace基础教程

前言:我们做内核开发的时候,我们经常要去跟踪linux内核的函数调用关系,对于我们来说ftrace是一个十分好用的工具,值得我们好好学习。ftrace不只是一个函数跟踪工具,它的跟踪能力之强大,还能调试和分析诸如延迟、意外代码路径、性能问题等一大堆问题。它也是一种很好的学习工具。

一,什么是ftrace

首先,在学习ftrace之前,我们要知道它是什么?根据linux ftrace的详细介绍,ftrace是一个linux内部的一个trace工具,用于帮助开发者和系统设计者知道内核当前正在干什么,从而更好的去分析性能问题。

1.1 ftrace的由来

ftrace是由Steven Rostedy和Ingo Molnar在内核2.6.27版本中引入的,那个时候,systemTap已经开始崭露头角,其它的trace工具包括LTTng等已经发展多年,那么为什么人们还需要开发一个trace工具呢?

SystemTap项目是 Linux 社区对 SUN Dtrace 的反应,目标是达到甚至超越 Dtrace 。因此 SystemTap 设计比较复杂,Dtrace 作为 SUN 公司的一个项目开发了多年才最终稳定发布,况且得到了 Solaris 内核中每个子系统开发人员的大力支持。SystemTap 想要赶超 Dtrace,困难不仅是一样,而且更大,因此她始终处在不断完善自身的状态下,在真正的产品环境,人们依然无法放心的使用她。不当的使用和 SystemTap 自身的不完善都有可能导致系统崩溃。

Ftrace的设计目标简单,本质上是一种静态代码插装技术不需要支持某种编程接口让用户自定义 trace 行为。静态代码插装技术更加可靠,不会因为用户的不当使用而导致内核崩溃。ftrace 代码量很小,稳定可靠。

同时Ftrace 有重大的创新:

  • Ftrace 只需要在函数入口插入一个外部调用:mcount
  • Ftrace 巧妙的拦截了函数返回的地址,从而可以在运行时先跳到一个事先准备好的统一出口,记录各类信息,然后再返回原来的地址
  • Ftrace 在链接完成以后,把所有插入点地址都记录到一张表中,然后默认把所有插入点都替换成为空指令(nop),因此默认情况下 Ftrace 的开销几乎是 0
  • Ftrace 可以在运行时根据需要通过 Sysfs 接口使能和使用,即使在没有第三方工具的情况下也可以方便使用

1.2 ftrace 原理

ftrace的名字由function trace而来。function trace是利用gcc编译器在编译时在每个函数的入口地址放置一个probe点,这个probe点会调用一个probe函数(gcc默认调用名为mcount的函数),这样这个 probe函数会对每个执行的内核函数进行跟踪(其实有少数几个内核函数不会被跟踪),并打印log到一个内核中的环形缓存(ring buffer)中,而用户可以通过debugfs来访问这个环形缓存中的内容。

各类tracer往ftrace主框架注册,不同的trace则在不同的probe点把信息通过probe函数给送到ring buffer中,再由暴露在用户态debufs实现相关控制。其主要的框架图如下图所示

【文章福利】小编推荐自己的Linux内核技术交流群:【 865977150】整理了一些个人觉得比较好的学习书籍、视频资料共享在群文件里面,有需要的可以自行添加哦!!!

640.png

其主要由两部分构成:

  • ftrace Framework core: 其主要包括利用 debugfs 系统在 /debugfs 下建立 tracing 目录,对用户空间输出 trace 信息,并提供了一系列的控制文件
  • 一系列的 tracer:每个 tracer 完成不同的功能,ftrace 的 trace 信息保存在 ring buffer(内存缓冲区) 中,它们统一由 framework 管理

对于ftrace有两种主要的跟踪机制往缓冲区写数据:

  1. 动态探针:可以动态跟踪内核函数的调用栈,包括function tracr,function graph trace两个tracer。其原理是利用mcount机制,在内核编译时,在每个函数入口保留数个字节,然后在使用ftrace时,将保留的字节替换为需要的指令,比如跳转到需要的执行探测操作的代码。
  2. 静态探针:是在内核代码中调用ftrace提供的相应接口实现,称之为静态是因为,是在内核代码中写死的,静态编译到内核代码中的,在内核编译后,就不能再动态修改。在开启ftrace相关的内核配置选项后,内核中已经在一些关键的地方设置了静态探测点,需要使用时,即可查看到相应的信息。

ftrace利用了gcc的profile特性,gcc 的 -pg 选项将在每个函数的入口处加入对mcount的代码调用。

如果ftrace编写了自己的mcount stub函数,则可借此实现trace功能。但是,在每个内核函数入口加入trace代码,必然影响内核的性能,为了减小对内核性能的影响,ftrace支持动态trace功能。当COFNIG_DYNAMIC_FTRACE被选中后,内核编译时会调用recordmcount.pl脚本,将每个函数的地址写入一个特殊的段:__mcount_loc。

二,ftrace 控制机制

要使用 ftrace,首先就是需要将系统的 debugfs 或者 tracefs 给挂载到某个地方,幸运的是,几乎所有的 Linux 发行版,都开启了 debugfs/tracefs 的支持,所以我们也没必要去重新编译内核了。

在比较老的内核版本,譬如 CentOS 7 的上面,debugfs 通常被挂载到 /sys/kernel/debug 上面(debug 目录下面有一个 tracing 目录),而比较新的内核,则是将 tracefs 挂载到 /sys/kernel/tracing,无论是什么,我都喜欢将 tracing 目录直接 link 到 /tracing。后面都会假设直接进入了 /tracing 目录,在讲解 ftrace 的 tracer 之前,我们先来看看 tracing 目录下的文件,它们提供了对 ftrace trace 过程的控制。

tracing 目录下的文件分成了下面四类:

  1. 提示类:显示当前系统可用的event,tracer 列表
  2. 控制类:控制 ftrace 的跟踪参数
  3. 显示类:显示 trace 信息
  4. 辅助类:一些不明或者不重要的辅助信息

三,ftrace的基础用法

3.1 内核配置

ftrace 提供了不同的跟踪器,以用于不同的场合,比如跟踪内核函数调用、对上下文切换进行跟踪、查看中断被关闭的时长、跟踪内核态中的延迟以及性能问题等。

系统开发人员可以使用 ftrace 对内核进行跟踪调试,以找到内核中出现的问题的根源,方便对其进行修复。

使用 ftrace ,首先要将其编译进内核,内核源码目录下的 kernel/trace/Makefile 文件给出了 ftrace 相关的编译选项

CONFIG_FTRACE=y
CONFIG_HAVE_FUNCTION_TRACER=y
CONFIG_HAVE_FUNCTION_GRAPH_TRACER=y
CONFIG_HAVE_DYNAMIC_FTRACE=y
CONFIG_FUNCTION_TRACER=y
CONFIG_IRQSOFF_TRACER=y
CONFIG_SCHED_TRACER=y
CONFIG_ENABLE_DEFAULT_TRACERS=y
CONFIG_FTRACE_SYSCALLS=y
CONFIG_PREEMPT_TRACER=y

3.2 ftrace三板斧

  1. 设置 tracer 类型
  2. 设置 tracer 参数
  3. 使能 tracer

四,总结

Ftrace 由 RedHat 的 Steve Rostedt 负责维护。到 2.6.30 为止,ftrace 提供了不同的跟踪器,以用于不同的场合,比如跟踪内核函数调用、对上下文切换进行跟踪、查看中断被关闭的时长、跟踪内核态中的延迟以及性能问题等。

  • Function tracer Function graph tracer :跟踪函数调用
  • Schedule switch tracer :跟踪进程调度情况
  • Wakeup tracer :跟踪进程的调度延迟,即高优先级进程从进入 ready 状态到获得 CPU 的延迟时间。该 tracer 只针对实时进程。
  • Irqsoff tracer :当中断被禁止时,系统无法相应外部事件,比如键盘和鼠标,时钟也无法产生 tick 中断。这意味着系统响应延迟,irqsoff 这个 tracer 能够跟踪并记录内核中哪些函数禁止了中断,对于其中中断禁止时间最长的,irqsoff 将在 log 文件的第一行标示出来,从而使开发人员可以迅速定位造成响应延迟的罪魁祸首
  • Preemptoff tracer:和前一个 tracer 类似,preemptoff tracer 跟踪并记录禁止内核抢占的函数,并清晰地显示出禁止抢占时间最长的内核函数。
  • Preemptirqsoff tracer :同上,跟踪和记录禁止中断或者禁止抢占的内核函数,以及禁止时间最长的函数
  • Branch tracer:跟踪内核程序中的 likely/unlikely 分支预测命中率情况。Branch tracer 能够记录这些分支语句有多少次预测成功。从而为优化程序提供线索。
  • Hardware branch tracer :利用处理器的分支跟踪能力,实现硬件级别的指令跳转记录。在 x86 上,主要利用了 BTS 这个特性。
  • Initcall tracer :记录系统在 boot 阶段所调用的 init call
  • Mmiotrace tracer :记录 memory map IO 的相关信息
  • Power tracer :记录系统电源管理相关的信息
  • Sysprof tracer :缺省情况下,sysprof tracer 每隔 1 msec 对内核进行一次采样,记录函数调用和堆栈信息
  • Kernel memory tracer :内存 tracer 主要用来跟踪 slab allocator 的分配情况。包括 kfree,kmem_cache_alloc 等 API 的调用情况,用户程序可以根据 tracer 收集到的信息分析内部碎片情况,找出内存分配最频繁的代码片断,等等。
  • Workqueue statistical tracer :这是一个 statistic tracer,统计系统中所有的 workqueue 的工作情况,比如有多少个 work 被插入 workqueue,多少个已经被执行等。开发人员可以以此来决定具体的 workqueue 实现,比如是使用
  • Event tracer:跟踪系统事件,比如 timer,系统调用,中断等

Ftrace 的实现依赖于其他很多内核特性,比如 tracepoint[3],debugfs[2],kprobe[4],IRQ-Flags[5] 等。

秋招可以写进简历的6个实战项目:

相关文章
|
2月前
|
安全 网络协议 Linux
深入理解Linux内核模块:加载机制、参数传递与实战开发
本文深入解析了Linux内核模块的加载机制、参数传递方式及实战开发技巧。内容涵盖模块基础概念、加载与卸载流程、生命周期管理、参数配置方法,并通过“Hello World”模块和字符设备驱动实例,带领读者逐步掌握模块开发技能。同时,介绍了调试手段、常见问题排查、开发规范及高级特性,如内核线程、模块间通信与性能优化策略。适合希望深入理解Linux内核机制、提升系统编程能力的技术人员阅读与实践。
207 1
|
2月前
|
Ubuntu Linux
Ubuntu 23.04 用上 Linux 6.2 内核,预计下放到 22.04 LTS 版本
Linux 6.2 带来了多项内容更新,修复了 AMD 锐龙处理器设备在启用 fTPM 后的运行卡顿问题,还增强了文件系统。
|
2月前
|
Ubuntu Linux
Ubuntu 23.10 现在由Linux内核6.3提供支持
如果你想在你的个人电脑上测试一下Ubuntu 23.10的最新开发快照,你可以从官方下载服务器下载最新的每日构建ISO。然而,请记住,这是一个预发布版本,所以不要在生产机器上使用或安装它。
|
2月前
|
弹性计算 安全 Linux
阿里云服务器ECS安装宝塔Linux面板、安装网站(新手图文教程)
本教程详解如何在阿里云服务器上安装宝塔Linux面板,涵盖ECS服务器手动安装步骤,包括系统准备、远程连接、安装命令执行、端口开放及LNMP环境部署,手把手引导用户快速搭建网站环境。
|
2月前
|
监控 Ubuntu Linux
什么Linux,Linux内核及Linux操作系统
上面只是简单的介绍了一下Linux操作系统的几个核心组件,其实Linux的整体架构要复杂的多。单纯从Linux内核的角度,它要管理CPU、内存、网卡、硬盘和输入输出等设备,因此内核本身分为进程调度,内存管理,虚拟文件系统,网络接口等4个核心子系统。
195 0
|
2月前
|
Web App开发 缓存 Rust
|
2月前
|
Ubuntu 安全 Linux
Ubuntu 发行版更新 Linux 内核,修复 17 个安全漏洞
本地攻击者可以利用上述漏洞,攻击 Ubuntu 22.10、Ubuntu 22.04、Ubuntu 20.04 LTS 发行版,导致拒绝服务(系统崩溃)或执行任意代码。
|
11月前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
382 4
|
11月前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
424 24