旅游管理与推荐系统Python+Django网页平台+协同过滤推荐算法

简介: 旅游管理与推荐系统Python+Django网页平台+协同过滤推荐算法

一、介绍

旅游管理与推荐系统。本系统使用Python作为主要编程语言,前端采用HTML、CSS、BootStrap等技术实现界面展示平台的开发,后端使用Django框架处理用户响应请求,并使用Ajax等技术实现前后端的数据通信。本系统主要功能有:

  • 系统分为两个角色:用户和管理员
  • 对于用户角色可以进行登录、注册、查看旅游景点信息、点赞、收藏、购买景点门票、发布评论、对景点进行评分、查看个人订单、查看个人收藏、编辑个人信息、余额充值、柱状图显示点赞排行榜等功能模块。
  • 在本系统中的“猜你喜欢”界面中,通过使用协同过滤推荐算法,基于用户对景点的打分数据作为基础,通过算法模块实现对当前登录用户的个性化推荐。
  • 管理员可进入后台管理系统平台中对景点和用户数据进行管理

二、部分效果图片展示

img_11_07_13_54_17

img_11_07_13_54_30

img_11_07_13_54_42

img_11_07_13_54_55

三、演示视频 and 代码 and 安装

视频+代码:https://www.yuque.com/ziwu/yygu3z/hb0wr2fpituoe754

四、关键技术

  1. 协同过滤推荐算法

协同过滤是一种推荐算法,它通过分析用户之间的行为和喜好的相似性来进行推荐。下面我将用Python和NumPy实现一个简单的物品基于协同过滤的推荐模块。
首先,我们需要一个用户-物品评分矩阵,其中行代表用户,列代表物品。评分可以是显式的,比如用户对物品的打分,也可以是隐式的,比如用户的点击或购买行为。
以下是实现的步骤:

  1. 计算物品之间的相似度。
  2. 找出用户还没有评分的物品。
  3. 基于用户对其他物品的评分和物品之间的相似度,为这些物品生成预测评分。
  4. 推荐评分最高的物品给用户。
import numpy as np

# 基于物品的协同过滤推荐算法实现
def item_based_collaborative_filtering(ratings, similarity='cosine'):
    """
    物品基于协同过滤推荐算法
    :param ratings: 用户-物品评分矩阵
    :param similarity: 相似度计算方法,默认为余弦相似度
    :return: 物品间的相似度矩阵
    """
    if similarity == 'cosine':
        # 使用余弦相似度计算物品之间的相似性
        item_similarity = cosine_similarity(ratings.T)
    else:
        # 可以扩展其他相似度计算方法
        raise ValueError('Unknown similarity function.')

    return item_similarity

def cosine_similarity(matrix):
    """
    计算余弦相似度
    :param matrix: 矩阵
    :return: 余弦相似度矩阵
    """
    # 矩阵点乘自身的转置,得到相似度分子部分
    dot_product = np.dot(matrix, matrix.T)
    # 计算分母
    magnitude = np.sqrt(np.diagonal(dot_product))
    # 分子除以分母外积(两两组合)
    return dot_product / np.outer(magnitude, magnitude)

def predict(ratings, item_similarity):
    """
    预测评分
    :param ratings: 用户-物品评分矩阵
    :param item_similarity: 物品间相似度矩阵
    :return: 预测评分矩阵
    """
    # 基于物品相似度和用户的原始评分计算预测评分
    # 评分矩阵与相似度矩阵的点积,按物品相似度加权
    return np.dot(ratings, item_similarity) / np.array([np.abs(item_similarity).sum(axis=1)])

# 示例
# 用户-物品评分矩阵(0表示未评分)
ratings = np.array([
    [4, 0, 0, 5, 1],
    [5, 5, 4, 0, 0],
    [0, 0, 0, 2, 4],
    [3, 3, 0, 0, 2]
])

# 计算物品相似度
item_sim = item_based_collaborative_filtering(ratings)

# 计算预测评分
pred_ratings = predict(ratings, item_sim)

print("物品相似度矩阵:")
print(item_sim)
print("预测评分矩阵:")
print(pred_ratings)

这个例子中的ratings矩阵是一个简单的4×5矩阵,代表有4个用户和5个物品,评分范围从1到5,0表示没有评分。item_based_collaborative_filtering函数计算物品之间的相似度,predict函数计算每个用户对每个物品的预测评分。

  1. Django框架使用

Django 是一个高级的 Python Web 框架,它鼓励快速开发和干净、实用的设计。由于其“开箱即用”的特性,它被广泛应用于快速构建高性能、优雅的网站。以下是 Django 框架的一些主要特点:
Django是一个开源的高级Web框架,它鼓励快速开发和干净、实用的设计。它是用Python编写的,因此充分利用了Python语言的简洁性和易于学习的特点。以下是Django框架的一些核心工作特点:

  1. 完整性:Django遵循“包含所有必需功能”的理念。它提供了开发Web应用所需的几乎所有组件,包括但不限于用户身份验证、内容管理、表单处理、文件上传、模板引擎等。
  2. 可扩展性:Django采用松耦合的设计哲学,提供了许多配置选项。这意味着你可以根据需求替换或扩展框架的某些部分。
  3. DRY 原则:Don't Repeat Yourself(DRY)是Django极力倡导的软件开发原则。Django旨在帮助开发者尽量减少重复代码,提高代码复用。
  4. MTV模式:Django采用的是Model-Template-View(MTV)模式,这是MVC(Model-View-Controller)框架模式的一个变种。在Django中,Model表示数据库层,Template表示前端的表现层,View则是应用的业务逻辑层。
目录
相关文章
|
1月前
|
数据采集 UED Python
如何应对动态图片大小变化?Python解决网页图片截图难题
随着互联网技术的发展,电商平台如京东(JD.com)广泛采用动态内容加载技术,给爬虫获取商品图片带来挑战:图片无法直接保存,尺寸动态变化,且存在反爬机制。本文介绍如何利用Python结合代理IP、多线程技术解决这些问题,通过Selenium和Pillow库实现动态网页图片的屏幕截图,有效绕过反爬措施,提升数据抓取效率和稳定性。具体步骤包括设置代理IP、使用Selenium抓取图片、多线程提升效率以及设置cookie和user-agent伪装正常用户。实验结果显示,该方法能显著提升抓取效率,精准截图保存图片,并成功绕过反爬机制。
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
34 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
26 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
42 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
12天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
29 2
|
12天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
28 1
|
14天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
1月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
60 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
24天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
71 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
云计算 Python
用python给你写个简单的计算器功能网页啊
这张图片展示了阿里巴巴集团的组织架构图,涵盖了核心电商、云计算、数字媒体与娱乐、创新业务等主要板块,以及各板块下的具体业务单元和部门。