深入理解JVM系列教程(04) - 垃圾回收机制(二) - 垃圾回收算法

简介: 深入理解JVM系列教程(04) - 垃圾回收机制(二) - 垃圾回收算法

1. 标志清除算法

标志清除算法有两个阶段:

  1. 标记阶段:找到所有可访问的对象,做个标记
  2. 清除阶段:遍历堆,把未被标记的对象回收

应用场景:

该算法一般应用于老年代,因为老年代的对象生命周期比较长

优缺点:

优点:

  1. 是可以解决循环引用的问题
  2. 必要时才回收(内存不足时)

缺点:

  1. 回收时,应用需要挂起,也就是stop the world。
  2. 标记和清除的效率不高,尤其是要扫描的对象比较多的时候
  3. 会造成内存碎片(会导致明明有内存空间,但是由于不连续,申请稍微大一些的对象无法做到)

2. 复制算法

如果jvm使用了coping算法,一开始就会将可用内存分为两块,from域和to域, 每次只是使用from域,to域则空闲着。当from域内存不够了,开始执行GC操作,这个时候,会把from域存活的对象拷贝到to域,然后直接把from域进行内存清理。

coping算法一般是使用在新生代中,因为新生代中的对象一般都是朝生夕死的,存活对象的数量并不多,这样使用coping算法进行拷贝时效率比较高。jvm将Heap 内存划分为新生代与老年代,又将新生代划分为Eden(伊甸园) 与2块Survivor Space(幸存者区) ,然后在Eden –>Survivor Space 以及From Survivor Space 与To Survivor Space 之间实行Copying 算法。

不过jvm在应用coping算法时,并不是把内存按照1:1来划分的,这样太浪费内存空间了。一般的jvm都是8:1。也即是说:

Eden区:From区:To区域 = 8:1:1

始终有90%的空间是可以用来创建对象的,而剩下的10%用来存放回收后存活的对象。

上图的流程解析如下:

1.当Eden区满的时候,会触发第一次young gc,把还活着的对象拷贝到Survivor From区;当Eden区再次触发young gc的时候,会扫描Eden区和From区域,对两个区域进行垃圾回收,经过这次回收后还存活的对象,则直接复制到To区域,并将Eden和From区域清空。


2.当后续Eden又发生young gc的时候,会对Eden和To区域进行垃圾回收,存活的对象复制到From区域,并将Eden和To区域清空。


3.可见部分对象会在From和To区域中复制来复制去,如此交换15次(由JVM参数MaxTenuringThreshold决定,这个参数默认是15),最终如果还是存活,就存入到老年代

注意: 万一存活对象数量比较多,那么To域的内存可能不够存放,这个时候会借助老年代的空间。

优点:在存活对象不多的情况下,性能高,能解决内存碎片和java垃圾回收算法之-标记清除 中导致的引用更新问题。

缺点: 会造成一部分的内存浪费。不过可以根据实际情况,将内存块大小比例适当调整;如果存活对象的数量比较大,coping的性能会变得很差。

3. 标记压缩算法

标记清除算法和标记压缩算法非常相同,但是标记压缩算法在标记清除算法之上解决内存碎片化。

压缩算法压缩对象的顺序主要分为如下几类:

  • 任意顺序 : 即不考虑原先对象的排列顺序,也不考虑对象之间的引用关系,随意移动对象;
  • 线性顺序 : 考虑对象的引用关系,例如a对象引用了b对象,则尽可能将a和b移动到一块;
  • 滑动顺序 : 按照对象原来在堆中的顺序滑动到堆的一端。

标记压缩算法的优点是解决内存碎片问题。缺点是压缩阶段,由于移动了可用对象,需要去更新引用。

4. Minor GC 和Full GC区别

新生代 GC(Minor GC) :指发生在新生代的垃圾收集动作,因为 Java 对象大多都具备朝生夕灭的特性,所以 Minor GC 非常频繁,一般回收速度也比较快。

老年代 GC(Major GC / Full GC) :指发生在老年代的 GC,出现了 Major GC,经常会伴随至少一次的 Minor GC(但非绝对的,在 ParallelScavenge 收集器的收集策略里就有直接进行 Major GC 的策略选择过程) 。MajorGC 的速度一般会比 Minor GC慢10倍以上。

Minor GC触发机制:

当年轻代满时就会触发Minor GC,这里的年轻代满指的是Eden代满,Survivor满不会引发

GCFull GC触发机制:

当年老代满时会引发Full GC,Full GC将会同时回收年轻代、年老代,当永久代满时也会引发Full GC,会导致Class、Method元信息的卸载其中

Minor GC如下图所示:

虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在 Eden 出生并经过第一次 Minor GC 后仍然存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为 1。对象在 Survivor 区中每熬过一次 Minor GC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁)时,就会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold (阈值)来设置。

5. JVM的永久代中会发生垃圾回收么?

垃圾回收不会发生在永久代,如果永久代满了或者是超过了临界值,会触发完全垃圾回收(Full GC)。如果你仔细查看垃圾收集器的输出信息,就会发现永久代也是被回收的。这就是为什么正确的永久代大小对避免Full GC是非常重要的原因。请参考下Java8:从永久代到元数据区(注:Java8中已经移除了永久代,新加了一个叫做元数据区的native内存区)

6. 分代算法

这种算法,根据对象的存活周期的不同将内存划分成几块,新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。可以用抓重点的思路来理解这个算法。

新生代对象朝生夕死,对象数量多,只要重点扫描这个区域,那么就可以大大提高垃圾收集的效率。另外老年代对象存储久,无需经常扫描老年代,避免扫描导致的开销。

新生代 :在新生代,每次垃圾收集器都发现有大批对象死去,只有少量存活,采用复制算法,只需要付出少量存活对象的复制成本就可以完成收集;

老年代 :而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须“标记-清除-压缩”算法进行回收。新创建的对象被分配在新生代,如果对象经过几次回收后仍然存活,那么就把这个对象划分到老年代。老年代区存放Young区Survivor满后触发minor GC后仍然存活的对象,当Eden区满后会将存活的对象放入Survivor区域,如果Survivor区存不下这些对象,GC收集器就会将这些对象直接存放到Old区中,如果Survivor区中的对象足够老,也直接存放到Old区中。如果Old区满了,将会触发Full GC回收整个堆内存。

总结

目录
相关文章
|
28天前
|
算法 Java
JVM垃圾回收机制
JVM垃圾回收机制
15 0
|
2月前
|
Java 程序员
探讨JVM垃圾回收机制与内存泄漏
探讨JVM垃圾回收机制与内存泄漏
|
18天前
|
存储 前端开发 安全
JVM内部世界(内存划分,类加载,垃圾回收)(上)
JVM内部世界(内存划分,类加载,垃圾回收)
50 0
|
22天前
|
存储 缓存 算法
深度解析JVM世界:垃圾判断和垃圾回收算法
深度解析JVM世界:垃圾判断和垃圾回收算法
|
2月前
|
存储 算法 Java
精华推荐 | 【JVM深层系列】「GC底层调优专题」一文带你彻底加强夯实底层原理之GC垃圾回收技术的分析指南(GC原理透析)
精华推荐 | 【JVM深层系列】「GC底层调优专题」一文带你彻底加强夯实底层原理之GC垃圾回收技术的分析指南(GC原理透析)
55 0
|
2月前
|
Java Serverless 对象存储
Serverless 应用引擎常见问题之jvm在进行垃圾回收的时候会导致重启如何解决
Serverless 应用引擎(Serverless Application Engine, SAE)是一种完全托管的应用平台,它允许开发者无需管理服务器即可构建和部署应用。以下是Serverless 应用引擎使用过程中的一些常见问题及其答案的汇总:
23 0
|
2月前
|
Rust Dart 算法
55.3k star!开源算法教程,附带动画图解,学习算法不再苦恼!
55.3k star!开源算法教程,附带动画图解,学习算法不再苦恼!
|
2月前
|
算法 Java UED
【JVM】分代收集算法:提升Java垃圾回收效率
【JVM】分代收集算法:提升Java垃圾回收效率
22 0
|
2月前
|
算法 Java
深入了解JVM和垃圾回收算法
深入了解JVM和垃圾回收算法
24 0
|
10天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。