代码已经上传到Github,有兴趣的同学可以下载来看看:https://github.com/ylw-github/Java-ThreadDemo
1. 什么是线程池
Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。
第一 :降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二 :提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三 :提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用线程池,必须对其实现原理了如指掌。
2. 线程池的作用
线程池是为突然大量爆发的线程设计的,通过有限的几个固定线程为大量的操作服务,减少了创建和销毁线程所需的时间,从而提高效率。
如果一个线程的时间非常长,就没必要用线程池了(不是不能作长时间操作,而是不宜。),况且我们还不能控制线程池中线程的开始、挂起、和中止。
3. 线程池的分类
1. newCachedThreadPool
作用:创建一个可根据需要创建新线程的线程池,但是在以前构造的线程可用时将重用它们,并在需要时使用提供的 ThreadFactory 创建新线程。
特征:
1)线程池中数量没有固定,可达到最大值(Interger. MAX_VALUE)
2)线程池中的线程可进行缓存重复利用和回收(回收默认时间为1分钟)
3)当线程池中,没有可用线程,会重新创建一个线程
创建方式: Executors.newCachedThreadPool();
2.newFixedThreadPool
作用:创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这些线程。在任意点,在大多数 nThreads 线程会处于处理任务的活动状态。如果在所有线程处于活动状态时提交附加任务,则在有可用线程之前,附加任务将在队列中等待。如果在关闭前的执行期间由于失败而导致任何线程终止,那么一个新线程将代替它执行后续的任务(如果需要)。在某个线程被显式地关闭之前,池中的线程将一直存在。
特征:
1)线程池中的线程处于一定的量,可以很好的控制线程的并发量
2)线程可以重复被使用,在显示关闭之前,都将一直存在
3)超出一定量的线程被提交时候需在队列中等待
创建方式:
1)Executors.newFixedThreadPool(int nThreads);//nThreads为线程的数量
2)Executors.newFixedThreadPool(int nThreads,ThreadFactory threadFactory);//nThreads为线程的数量,threadFactory创建线程的工厂方式
3.newSingleThreadExecutor
作用:创建一个使用单个 worker 线程的 Executor,以无界队列方式来运行该线程。(注意,如果因为在关闭前的执行期间出现失败而终止了此单个线程,那么如果需要,一个新线程将代替它执行后续的任务)。可保证顺序地执行各个任务,并且在任意给定的时间不会有多个线程是活动的。与其他等效的newFixedThreadPool(1) 不同,可保证无需重新配置此方法所返回的执行程序即可使用其他的线程。
特征:
1)线程池中最多执行1个线程,之后提交的线程活动将会排在队列中以此执行
创建方式:
1)Executors.newSingleThreadExecutor() ;
2)Executors.newSingleThreadExecutor(ThreadFactory threadFactory);// threadFactory创建线程的工厂方式
4.newScheduleThreadPool
作用: 创建一个线程池,它可安排在给定延迟后运行命令或者定期地执行。
特征:
1)线程池中具有指定数量的线程,即便是空线程也将保留
2)可定时或者延迟执行线程活动
创建方式:
1)Executors.newScheduledThreadPool(int corePoolSize);// corePoolSize线程的个数
2)newScheduledThreadPool(int corePoolSize, ThreadFactory threadFactory);// corePoolSize线程的个数,threadFactory创建线程的工厂
5.newSingleThreadScheduledExecutor
作用: 创建一个单线程执行程序,它可安排在给定延迟后运行命令或者定期地执行。
特征:
1)线程池中最多执行1个线程,之后提交的线程活动将会排在队列中以此执行
2)可定时或者延迟执行线程活动
创建方式:
1)Executors.newSingleThreadScheduledExecutor() ;
2)Executors.newSingleThreadScheduledExecutor(ThreadFactory threadFactory) ;//threadFactory创建线程的工厂
4. ThreadPoolExecutor
Java是天生就支持并发的语言,支持并发意味着多线程,线程的频繁创建在高并发及大数据量是非常消耗资源的,因为java提供了线程池。在jdk1.5以前的版本中,线程池的使用是及其简陋的,但是在JDK1.5后,有了很大的改善。JDK1.5之后加入了java.util.concurrent包,java.util.concurrent包的加入给予开发人员开发并发程序以及解决并发问题很大的帮助。这篇文章主要介绍下并发包下的Executor接口,Executor接口虽然作为一个非常旧的接口(JDK1.5 2004年发布),但是很多程序员对于其中的一些原理还是不熟悉,因此写这篇文章来介绍下Executor接口,同时巩固下自己的知识。如果文章中有出现错误,欢迎大家指出。
Executor框架的最顶层实现是ThreadPoolExecutor类,Executors工厂类中提供的newScheduledThreadPool
、newFixedThreadPool
、newCachedThreadPool
方法其实也只是ThreadPoolExecutor的构造函数参数不同而已。通过传入不同的参数,就可以构造出适用于不同应用场景下的线程池,那么它的底层原理是怎样实现的呢,这篇就来介绍下ThreadPoolExecutor线程池的运行过程。
- corePoolSize: 核心池的大小。 当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中
- maximumPoolSize: 线程池最大线程数,它表示在线程池中最多能创建多少个线程;
- kekeepAliveTime: 表示线程没有任务执行时最多保持多久时间会终止。
- unit: 参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:
5. 线程池的四种创建方式
Java通过Executors(jdk1.5并发包)提供四种线程池,分别为:
- newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
- newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
- newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
- newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。
5.1 newCachedThreadPool
创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。示例代码如下:
// 无限大小线程池 jvm自动回收 ExecutorService newCachedThreadPool = Executors.newCachedThreadPool(); for (int i = 0; i < 10; i++) { final int temp = i; newCachedThreadPool.execute(new Runnable() { @Override public void run() { try { Thread.sleep(100); } catch (Exception e) { // TODO: handle exception } System.out.println(Thread.currentThread().getName() + ",i:" + temp); } }); }
运行结果:
总结: 线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。
5.2 newFixedThreadPool
创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。示例代码如下:
ExecutorService newFixedThreadPool = Executors.newFixedThreadPool(5); for (int i = 0; i < 10; i++) { final int temp = i; newFixedThreadPool.execute(new Runnable() { @Override public void run() { System.out.println("线程ID -> "+ Thread.currentThread().getId() + ",i:" + temp); } }); }
运行结果:
总结:因为线程池大小为3,每个任务输出index后sleep 2秒,所以每两秒打印3个数字。定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()
5.3 newScheduledThreadPool
创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:
import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; public class newScheduledThreadPoolDemo { public static void main(String[] args) { ScheduledExecutorService newScheduledThreadPool = Executors.newScheduledThreadPool(5); for (int i = 0; i < 10; i++) { final int temp = i; newScheduledThreadPool.schedule(new Runnable() { public void run() { System.out.println("i:" + temp); } }, 3, TimeUnit.SECONDS); } } }
运行结果,表示延迟3秒执行
5.4 newSingleThreadExecutor
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:
ExecutorService newSingleThreadExecutor = Executors.newSingleThreadExecutor(); for (int i = 0; i < 10; i++) { final int index = i; newSingleThreadExecutor.execute(new Runnable() { @Override public void run() { System.out.println("index:" + index); try { Thread.sleep(200); } catch (Exception e) { e.printStackTrace(); } } }); }
运行结果,结果依次输出,相当于顺序执行各个任务。:
6. 线程池的原理剖析
提交一个任务到线程池中,线程池的处理流程如下:
- 判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。如果核心线程都在执行任务,则进入下个流程。
- 线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。
- 判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。
7. 自定义线程池
如果当前线程池中的线程数目小于corePoolSize,则每来一个任务,就会创建一个线程去执行这个任务;
如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到任务缓存队列当中,若添加成功,则该任务会等待空闲线程将其取出去执行;若添加失败(一般来说是任务缓存队列已满),则会尝试创建新的线程去执行这个任务;
如果队列已经满了,则在总线程数不大于maximumPoolSize的前提下,则创建新的线程
如果当前线程池中的线程数目达到maximumPoolSize,则会采取任务拒绝策略进行处理;
如果线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止,直至线程池中的线程数目不大于corePoolSize;如果允许为核心池中的线程设置存活时间,那么核心池中的线程空闲时间超过keepAliveTime,线程也会被终止。
package com.ylw.threadpool; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class DIVThreadPool { public static class TaskThred implements Runnable { private String taskName; public TaskThred(String taskName) { this.taskName = taskName; } @Override public void run() { System.out.println(Thread.currentThread().getName() +" => "+ taskName); } } public static void main(String[] args) { ThreadPoolExecutor executor = new ThreadPoolExecutor(1, 2, 60L, TimeUnit.SECONDS, new ArrayBlockingQueue<>(3)); for (int i = 1; i <= 6; i++) { TaskThred t1 = new TaskThred("任务" + i); executor.execute(t1); } executor.shutdown(); } }
运行结果:
pool-1-thread-1 => 任务1 pool-1-thread-1 => 任务2 pool-1-thread-1 => 任务3 pool-1-thread-1 => 任务4 pool-1-thread-2 => 任务5 Exception in thread "main" java.util.concurrent.RejectedExecutionException: Task com.ylw.threadpool.DIVThreadPool$TaskThred@1d44bcfa rejected from java.util.concurrent.ThreadPoolExecutor@266474c2[Running, pool size = 2, active threads = 1, queued tasks = 0, completed tasks = 1] at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2063) at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:830) at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1379) at com.ylw.threadpool.DIVThreadPool.main(DIVThreadPool.java:27)
8. 合理配置线程池
8.1 CPU密集
1. CPU密集的意思是该任务需要大量的运算,而没有阻塞,CPU一直全速运行。
2. CPU密集任务只有在真正的多核CPU上才可能得到加速(通过多线程),而在单核CPU上,无论你开几个模拟的多线程,该任务都不可能得到加速,因为CPU总的运算能力就那些。
8.2 IO密集
IO密集型,即该任务需要大量的IO,即大量的阻塞。在单线程上运行IO密集型的任务会导致浪费大量的CPU运算能力浪费在等待。所以在IO密集型任务中使用多线程可以大大的加速程序运行,即时在单核CPU上,这种加速主要就是利用了被浪费掉的阻塞时间。
8.3 合理设置线程池大小
如何合理的设置线程池大小?
要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析:
1. 任务的性质:CPU密集型任务、IO密集型任务、混合型任务。
2. 任务的优先级:高、中、低。
3. 任务的执行时间:长、中、短。
4. 任务的依赖性:是否依赖其他系统资源,如数据库连接等。
性质不同的任务可以交给不同规模的线程池执行。
对于不同性质的任务来说,CPU密集型任务应配置尽可能小的线程,如配置CPU个数+1的线程数,IO密集型任务应配置尽可能多的线程,因为IO操作不占用CPU,不要让CPU闲下来,应加大线程数量,如配置两倍CPU个数+1,而对于混合型的任务,如果可以拆分,拆分成IO密集型和CPU密集型分别处理,前提是两者运行的时间是差不多的,如果处理时间相差很大,则没必要拆分了。
若任务对其他系统资源有依赖,如某个任务依赖数据库的连接返回的结果,这时候等待的时间越长,则CPU空闲的时间越长,那么线程数量应设置得越大,才能更好的利用CPU。
当然具体合理线程池值大小,需要结合系统实际情况,在大量的尝试下比较才能得出,以上只是前人总结的规律。
最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )
* CPU数目
比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)
* CPU数目
可以得出一个结论:
线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。
以上公式与之前的CPU和IO密集型任务设置线程数基本吻合。
CPU密集型时,任务可以少配置线程数,大概和机器的cpu核数相当,这样可以使得每个线程都在执行任务IO密集型时,大部分线程都阻塞,故需要多配置线程数,2 * cpu核数
操作系统之名称解释:
某些进程花费了绝大多数时间在计算上,而其他则在等待I/O上花费了大多是时间,
前者称为计算密集型(CPU密集型)computer-bound,后者称为I/O密集型,I/O-bound。