基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM

1.算法运行效果图预览

738222cd46dc6ab128bf5f0dc3eca35a_82780907_202311070000320257373939_Expires=1699287032&Signature=BhhHGUhEU2NIS3HE4jDSbE2eQFI%3D&domain=8.jpeg
0e8737b6eaa35dffbb67f46d3c52c659_82780907_202311070000320273325168_Expires=1699287032&Signature=3lRf0UB0ynWHHUYR61EiiK8hJwU%3D&domain=8.jpeg
fcc64099620ebe4be83eb018840a37c9_82780907_202311070002480241916465_Expires=1699287168&Signature=YeqhrqEDeLz%2BQt9RFP6UnjhmSec%3D&domain=8.jpeg

SVM:

1282a7a9b9cc4c68ea49f49d81967c2b_82780907_202311070003350100175213_Expires=1699287215&Signature=qOEKuIcsb2pkTez41iKQ2HQwVeo%3D&domain=8.jpeg
13efed37fa7c86a66c4621aaccceacc6_82780907_202311070003350209186843_Expires=1699287215&Signature=rz3Ge4TI%2B9kKx%2FpuRb6%2BM3SIcGs%3D&domain=8.jpeg

PSO-SVM:
a163eb8b540283e9625602bfce85c271_82780907_202311070006360302243528_Expires=1699287396&Signature=IVmlLXlfhSs%2BXSgDAmgm16FSdoE%3D&domain=8.jpeg

3056247359742c0b4ebe8fb056025d68_82780907_202311070005240302786843_Expires=1699287324&Signature=uL6aZr0U%2F%2FNCpQTJThEX0OnbFIM%3D&domain=8.jpeg
da728a1eacff869b2af8057522969aa8_82780907_202311070005240333890898_Expires=1699287324&Signature=bqOAZt1RoB1bXqczv%2FqqmB%2BPOPs%3D&domain=8.jpeg

GA-PSO-SVM:
b48a2dd3185d90fbba3c0c1acd8e2443_82780907_202311070006360224785228_Expires=1699287396&Signature=qWHkrIQ5GFgUnQEdS5HY6EXLMMY%3D&domain=8.jpeg

以上仿真图参考文献《基于相空间重构的混沌背景下微弱信号检测方法研究》

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
3.1 SVM
支持向量机(Support Vector Machine,SVM)是一种用于分类和回归的机器学习方法,其原理基于寻找一个最优超平面(或者曲线在非线性情况下)来划分不同类别的数据点。SVM 的目标是找到一个能够最大化不同类别之间的间隔(margin)的超平面,从而在未知数据上取得良好的泛化能力。

    SVM 的目标是找到一个超平面,使得距离超平面最近的数据点(支持向量)到超平面的距离(间隔)最大。这个间隔可以用数据点到超平面的函数距离来表示,即:

d8abc4d0d9625742650f2a22ccc16fc4_82780907_202311070007380333622162_Expires=1699287458&Signature=5rFSy4nWdGpHuSL%2FWyWKlswEfUI%3D&domain=8.png

SVM 的目标是解决以下优化问题:
8a3628f0e6a6eb818a379c91bb9869ed_82780907_202311070008200567251351_Expires=1699287500&Signature=a%2BAa4h85EN1DOZrlxoI11Qcxbi0%3D&domain=8.png

    在非线性情况下,SVM 可以通过引入核函数将数据从原始特征空间映射到高维特征空间,从而找到一个在高维空间中的超平面来进行分类。常见的核函数包括线性核、多项式核、高斯核(RBF核)等。
    总结起来,SVM 的原理在于寻找一个最优的超平面或曲线,使得不同类别之间的间隔最大化,从而实现分类任务。它的优势在于能够处理高维数据、非线性问题,并且在一定程度上能够抵抗过拟合。

3.2 PSO-SVM
在将PSO应用于SVM的优化过程中,我们主要关注SVM的超参数,如核函数类型、正则化参数C等。PSO算法可以帮助我们找到一组超参数,使得SVM在训练数据上的性能最佳。

f7c7552912c20e21f960fe00ccc420ce_82780907_202311070009120988991668_Expires=1699287553&Signature=XfZlkcG2Zvg2gz%2F5p1fbe2jgGHw%3D&domain=8.png

    在PSO-SVM中,适应度函数通常是SVM在训练集上的性能指标,如准确率、F1分数等。通过PSO算法优化SVM的超参数,可以帮助我们找到一组最优的超参数配置,从而提高SVM在分类问题中的性能表现。这种方法可以在一定程度上自动搜索超参数空间,避免了手动调整的繁琐过程。

3.3 GA-PSO-SVM
GA-PSO结合了遗传算法的群体进化和粒子群优化的局部搜索能力。遗传算法通过模拟生物进化的过程,通过交叉、变异等操作对种群中的个体进行优化。粒子群优化模拟了鸟群或鱼群等自然界中群体行为,通过个体历史最优和群体历史最优来调整粒子的位置。

    在将GA-PSO应用于SVM的优化过程中,我们主要关注SVM的超参数,如核函数类型、正则化参数C等。GA-PSO算法可以帮助我们在超参数空间中搜索到更优的解,以提高SVM在训练数据上的性能。GA-PSO的公式包括遗传算法的选择、交叉和变异操作,以及粒子群优化的速度和位置更新公式。这些公式可以根据具体的算法变体进行调整。

    总体而言,GA-PSO算法将遗传算法和粒子群优化结合起来,通过遗传算法的全局搜索和粒子群优化的局部搜索,以及SVM的性能评估,实现对SVM超参数的优化。这种方法可以更全面地搜索超参数空间,从而提高SVM在分类问题中的性能。

4.部分核心程序
```while gen < MAXGEN;
gen
w = wmax-gen(wmax-wmin)/MAXGEN;
FitnV = ranking(Objv);
Selch = select('sus',Chrom,FitnV);
Selch = recombin('xovsp',Selch,0.9);
Selch = mut(Selch,0.1);
phen1 = bs2rv(Selch,FieldD);
%基于粒子群的速度更新
for i=1:1:NIND
if gen > 1
va(i) = w
va(i) + c1rand(1)(phen1(i,1)-taos2) + c2rand(1)(taos-taos2);
vb(i) = wvb(i) + c1rand(1)(phen1(i,2)-ms2) + c2rand(1)(ms-ms2);
vc(i) = w
vc(i) + c1rand(1)(phen1(i,3)-Cs2) + c2rand(1)(Cs-Cs2);
vd(i) = wvd(i) + c1rand(1)(phen1(i,4)-gammas2) + c2rand(1)*(gammas-gammas2);
else
va(i) = 0;
vb(i) = 0;
vc(i) = 0;
vd(i) = 0;
end
end

  for a=1:1:NIND  
      Data1(a,:) = phen1(a,:);      
      tao        = round(Data1(a,1) + 0.15*va(i));%遗传+PSO
      m          = round(Data1(a,2) + 0.15*vb(i));
      C          = Data1(a,3)       + 0.15*vc(i);
      gamma      = Data1(a,4)       + 0.15*vd(i);

        if tao >= max1
           tao  = max1;
        end
        if tao <= min1
           tao  = min1;
        end     
        if m >= max2
           m = max2;
        end
        if m <= min2
           m = min2;
        end  
        if C >= max3
           C = max3;
        end
        if C <= min3
           C = min3;
        end  
        if gamma >= max4
           gamma = max4;
        end
        if gamma <= min4
           gamma = min4;
        end   


      %计算对应的目标值
      [epls,tao,m,C,gamma] = func_fitness(X_train,X_test,tao,m,C,gamma);
      E                    = epls;
      JJ(a,1)              = E;
  end 

  Objvsel=(JJ);    
  [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
  gen=gen+1; 

  %保存参数收敛过程和误差收敛过程以及函数值拟合结论
  Error(gen) = mean(JJ);
  pause(0.2);
  [V,I] = min(Objvsel);
  JI      = I;
  tmpps    = Data1(JI,:);
  taos2    = round(tmpps(1));
  ms2      = round(tmpps(2));
  Cs2      = tmpps(3);
  gammas2  = tmpps(4);

end

[V,I] = min(Objvsel);
JI = I;
tmpps = Data1(JI,:);
tao0 = round(tmpps(1));
m0 = round(tmpps(2));
C0 = tmpps(3);
gamma0 = tmpps(4);

%save GAPSO.mat tao0 m0 C0 gamma0
end

if SEL == 2
load GAPSO.mat
%调用四个最优的参数
tao = tao0;
m = m0;
C = C0;
gamma = gamma0;

%先进行相空间重构
[Xn ,dn ] = func_CC(X_train,tao,m);
[Xn1,dn1] = func_CC(X_test,tao,m);

t = 1/1:1/1:length(dn1)/1;
f = 0.05;
sn = 0.0002sin(2pift);
%叠加
dn1 = dn1 + sn';

%SVM训练%做单步预测
cmd = ['-s 3',' -t 2',[' -c ', num2str(C)],[' -g ',num2str(gamma)],' -p 0.000001'];
model = svmtrain(dn,Xn,cmd);
%SVM预测
[Predict1,error1] = svmpredict(dn1,Xn1,model);
RMSE = sqrt(sum((dn1-Predict1).^2)/length(Predict1));
Err = dn1-Predict1;
%误差获取
clc;
RMSE

figure;
plot(Err,'b');
title('混沌背景信号的预测误差');
xlabel('样本点n');
ylabel('误差幅值');
Fs = 1;
y = fftshift(abs(fft(Err)));
N = length(y)
fc = [-N/2+1:N/2]/N*Fs;
figure;
plot(fc(N/2+2:N),y(N/2+2:N));
xlabel('归一化频率');
ylabel('频谱');
text(0.06,0.07,'f=0.05Hz');
end

```

相关文章
|
4天前
|
算法
基于排队理论的客户结账等待时间MATLAB模拟仿真
本程序基于排队理论,使用MATLAB2022A模拟客户结账等待时间,分析平均队长、等待时长、不能结账概率、损失顾客数等关键指标。核心算法采用泊松分布和指数分布模型,研究顾客到达和服务过程对系统性能的影响,适用于银行、超市等多个领域。通过仿真,优化服务效率,减少顾客等待时间。
|
2天前
|
算法
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
16 6
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。

热门文章

最新文章