CNN+GRU的网络攻击检测识别详细教学

简介: CNN+GRU的网络攻击检测识别详细教学

视频讲解:

CNN+GRU的网络攻击检测识别完整代码数据_哔哩哔哩_bilibili

效果:

代码:

import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, BatchNormalization, LSTM, Dropout, Flatten, Dense, Add
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, Activation, AveragePooling2D, Multiply, MaxPooling2D, Dense, Reshape
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, BatchNormalization, LSTM, Dropout, Dense, Reshape, \
    Flatten
from tensorflow.keras import
相关文章
|
22天前
|
机器学习/深度学习 编解码 PyTorch
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
|
1月前
|
网络协议
使用netwox/TCP协议检测网络性能
使用netwox/TCP协议检测网络性能
|
24天前
|
机器学习/深度学习 传感器 算法
基于yolov2深度学习网络的打电话行为检测系统matlab仿真
基于yolov2深度学习网络的打电话行为检测系统matlab仿真
基于yolov2深度学习网络的打电话行为检测系统matlab仿真
|
1月前
|
机器学习/深度学习 算法 TensorFlow
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
37 0
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
|
20天前
|
机器学习/深度学习 测试技术 Ruby
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
29 2
|
20天前
|
机器学习/深度学习 算法 网络架构
YOLOv5改进 | 2023主干篇 | FasterNeT跑起来的主干网络( 提高FPS和检测效率)
YOLOv5改进 | 2023主干篇 | FasterNeT跑起来的主干网络( 提高FPS和检测效率)
30 0
|
2天前
|
机器学习/深度学习 算法 计算机视觉
m基于Yolov2深度学习网络的喝水行为检测系统matlab仿真,带GUI界面
m基于Yolov2深度学习网络的喝水行为检测系统matlab仿真,带GUI界面
10 0
|
2天前
|
机器学习/深度学习 数据采集 监控
基于yolov2深度学习网络的车辆检测算法matlab仿真,包括白天场景和夜晚场景
基于yolov2深度学习网络的车辆检测算法matlab仿真,包括白天场景和夜晚场景
|
7天前
|
机器学习/深度学习 数据采集 算法
基于yolov2深度学习网络的血细胞检测算法matlab仿真
基于yolov2深度学习网络的血细胞检测算法matlab仿真
|
14天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的人员跌倒检测识别matlab仿真
基于yolov2深度学习网络的人员跌倒检测识别matlab仿真

热门文章

最新文章