MySQL 用 limit 为什么会影响性能?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 一,前言首先说明一下MySQL的版本:

一,前言

首先说明一下MySQL的版本:


mysql> select version();
+-----------+
| version() |
+-----------+
| 5.7.17    |
+-----------+
1 row in set (0.00 sec)


表结构:


mysql> desc test;
+--------+---------------------+------+-----+---------+----------------+
| Field  | Type                | Null | Key | Default | Extra          |
+--------+---------------------+------+-----+---------+----------------+
| id     | bigint(20) unsigned | NO   | PRI | NULL    | auto_increment |
| val    | int(10) unsigned    | NO   | MUL | 0       |                |
| source | int(10) unsigned    | NO   |     | 0       |                |
+--------+---------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)


id为自增主键,val为非唯一索引。


灌入大量数据,共500万:


mysql> select count(*) from test;
+----------+
| count(*) |
+----------+
|  5242882 |
+----------+
1 row in set (4.25 sec)


我们知道,当limit offset rows中的offset很大时,会出现效率问题:


mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id      | val | source |
+---------+-----+--------+
| 3327622 |   4 |      4 |
| 3327632 |   4 |      4 |
| 3327642 |   4 |      4 |
| 3327652 |   4 |      4 |
| 3327662 |   4 |      4 |
+---------+-----+--------+
5 rows in set (15.98 sec)


为了达到相同的目的,我们一般会改写成如下语句:


mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id      | val | source | id      |
+---------+-----+--------+---------+
| 3327622 |   4 |      4 | 3327622 |
| 3327632 |   4 |      4 | 3327632 |
| 3327642 |   4 |      4 | 3327642 |
| 3327652 |   4 |      4 | 3327652 |
| 3327662 |   4 |      4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.38 sec)


时间相差很明显。


为什么会出现上面的结果?我们看一下select * from test where val=4 limit 300000,5;的查询过程:


查询到索引叶子节点数据。
根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。


类似于下面这张图:

像上面这样,需要查询300005次索引节点,查询300005次聚簇索引的数据,最后再将结果过滤掉前300000条,取出最后5条。MySQL耗费了大量随机I/O在查询聚簇索引的数据上,而有300000次随机I/O查询到的数据是不会出现在结果集当中的。


肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要5次随机I/O,类似于下面图片的过程:

其实我也想问这个问题。


证实


下面我们实际操作一下来证实上述的推论:

为了证实select * from test where val=4 limit 300000,5是扫描300005个索引节点和300005个聚簇索引上的数据节点,我们需要知道MySQL有没有办法统计在一个sql中通过索引节点查询数据节点的次数。我先试了Handler_read_*系列,很遗憾没有一个变量能满足条件。


我只能通过间接的方式来证实:

InnoDB中有buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个sql,来比较buffer pool中的数据页的数量。预测结果是运行select * from test a inner join (select id from test where val=4 limit 300000,5) b>之后,buffer pool中的数据页的数量远远少于select * from test where val=4 limit 300000,5;对应的数量,因为前一个sql只访问5次数据页,而后一个sql访问300005次数据页。

select * from test where val=4 limit 300000,5

mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
Empty set (0.04 sec)


可以看出,目前buffer pool中没有关于test表的数据页。


mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id      | val | source |
+---------+-----+--------+
| 3327622 |   4 |      4 |
| 3327632 |   4 |      4 |
| 3327642 |   4 |      4 |
| 3327652 |   4 |      4 |
| 3327662 |   4 |      4 |
+---------+-----+--------+
5 rows in set (26.19 sec)
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY    |     4098 |
| val        |      208 |
+------------+----------+
2 rows in set (0.04 sec)


可以看出,此时buffer pool中关于test表有4098个数据页,208个索引页。

select * from test a inner join (select id from test where val=4 limit 300000,5) b>为了防止上次试验的影响,我们需要清空buffer pool,重启mysql。mysqladmin shutdown/usr/local/bin/mysqld_safe &mysql>select index_name,count(*)frominformation_schema.INNODB_BUFFER_PAGEwhere INDEX_NAMEin('val','primary')and TABLE_NAMElike'%test%'group by index_name;Emptyset (0.03 sec)运行sql:mysql>select*from test ainner join (select idfrom testwhere val=4limit300000,5) bona.id=b.id;+---------+-----+--------+---------+| id | val | source | id |+---------+-----+--------+---------+|3327622 |4 |4 |3327622 ||3327632 |4 |4 |3327632 ||3327642 |4 |4 |3327642 ||3327652 |4 |4 |3327652 ||3327662 |4 |4 |3327662 |+---------+-----+--------+---------+5 rowsinset (0.09 sec)mysql>select index_name,count(*)frominformation_schema.INNODB_BUFFER_PAGEwhere INDEX_NAMEin('val','primary')and TABLE_NAMElike'%test%'group by index_name;+------------+----------+| index_name |count(*) |+------------+----------+| PRIMARY |5 || val |390 |+------------+----------+2 rowsinset (0.03 sec)我们可以看明显的看出两者的差别:第一个sql加载了4098个数据页到buffer pool,而第二个sql只加载了5个数据页到buffer pool。符合我们的预测。也证实了为什么第一个sql会慢:读取大量的无用数据行(300000),最后却抛弃掉。而且这会造成一个问题:加载了很多热点不是很高的数据页到buffer pool,会造成buffer pool的污染,占用buffer pool的空间。遇到的问题


为了在每次重启时确保清空buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时dump出buffer pool中的数据和在数据库开启时载入在磁盘上备份buffer pool的数据。参考资料:1.https://explainextended.com/2009/10/23/mysql-order-by-limit-performance-late-row-lookups/2.https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-buffer-pool-tables.html

本文就是愿天堂没有BUG给大家分享的内容,大家有收获的话可以分享下,想学习更多的话可以到微信公众号里找我,我等你哦。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
252 66
|
5天前
|
Cloud Native 关系型数据库 MySQL
无缝集成 MySQL,解锁秒级数据分析性能极限
在数据驱动决策的时代,一款性能卓越的数据分析引擎不仅能提供高效的数据支撑,同时也解决了传统 OLTP 在数据分析时面临的查询性能瓶颈、数据不一致等挑战。本文将介绍通过 AnalyticDB MySQL + DTS 来解决 MySQL 的数据分析性能问题。
|
3天前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
42 0
|
1月前
|
SQL 缓存 关系型数据库
MySQL Limit实现原理
本文深入解析了MySQL中`LIMIT`子句的实现原理及其在分页、性能优化等场景下的应用技巧。文章详细介绍了`LIMIT`的基本语法、MySQL内部处理流程,以及如何通过索引优化、覆盖索引等策略提升分页查询的性能,并提供了实践建议。
115 3
|
2月前
|
SQL 关系型数据库 MySQL
MySQL性能探究:count(*)与count(1)的性能对决
在MySQL数据库的性能优化中,对查询语句的细微差别有着深入的理解是非常重要的。`count(*)`和`count(1)`是两种常用的聚合函数,用于计算行数。在面试中,面试官经常会问到这两种函数的性能差异。本文将探讨`count(*)`与`count(1)`的性能对比,并整理十道经典的MySQL面试题,帮助你在面试中游刃有余。
118 3
|
2月前
|
缓存 监控 关系型数据库
如何根据监控结果调整 MySQL 数据库的参数以提高性能?
【10月更文挑战第28天】根据MySQL数据库的监控结果来调整参数以提高性能,需要综合考虑多个方面的因素
108 1
|
2月前
|
监控 关系型数据库 MySQL
如何监控和诊断 MySQL 数据库的性能问题?
【10月更文挑战第28天】监控和诊断MySQL数据库的性能问题是确保数据库高效稳定运行的关键
331 1
|
2月前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
197 1
|
2月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
477 1
|
2月前
|
关系型数据库 MySQL PostgreSQL
postgresql和mysql中的limit使用方法
postgresql和mysql中的limit使用方法
99 1