RocketMQ x OpenTelemetry 分布式全链路追踪最佳实践(1)

本文涉及的产品
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
简介: RocketMQ x OpenTelemetry 分布式全链路追踪最佳实践

image.png

在分布式系统中,多个服务之间的交互涉及到复杂的网络通信和数据传输,其中每个服务可能由不同的团队或组织负责维护和开发。因此,在这样的环境下,当一个请求被发出并经过多个服务的处理后,如果出现了问题或错误,很难快速定位到根因。分布式全链路追踪技术则可以帮助我们解决这个问题,它能够跟踪和记录请求在系统中的传输过程,并提供详细的性能和日志信息,使得开发人员能够快速诊断和定位问题。对于分布式系统的可靠性、性能和可维护性起到了非常重要的作用。


RocketMQ 5.0 与分布式全链路追踪

Apache RocketMQ 5.0 版本作为近几年来最大的一次迭代,在整个可观测性上也进行了诸多改进。其中,支持标准化的分布式全链路追踪就是一个重要的特性。

image.png

RocketMQ 5.0 可观测

而由 Google、Microsoft、Uber 和 LightStep 联合发起的 CNCF OpenTelemetry 作为 OpenTracing 和 OpenCensus 的官方继任者,已经成为可观测领域的事实标准,RocketMQ 的分布式全链路追踪也围绕 OpenTelemetry 进行展开。

分布式链路追踪系统的起源可以追溯到 2007 年 Google 发布的《Dapper, a Large-Scale Distributed Systems Tracing Infrastructure》论文。这篇论文详细介绍了 Google 内部使用的链路追踪系统 Dapper,其中使用的 span 概念被广泛采用,并成为后来开源链路追踪系统中的基础概念之一。

image.png

Dapper Trace Tree

在 Dapper 中,每个请求或事务被追踪时都会创建一个 span,记录整个请求或事务处理过程中的各个组件和操作的时间和状态信息。这些 span 可以嵌套,形成一个树形结构,用于表示整个请求或事务处理过程中各个组件之间的依赖关系和调用关系。后来,很多开源链路追踪系统,如 Zipkin 和 OpenTracing,也采用了类似的 span 概念来描述分布式系统中的链路追踪信息。现在,合并了 OpenTracing 和 OpenCensus 的 CNCF OpenTelemetry 自然也一样采用了 span 概念,并在此基础上进行了进一步发展。

OpenTelemetry 为 messaging 相关的 span 定义了一组语义约定(semantic convention),旨在制定一套与特定消息系统无关的 specification,而 OpenTelmetry 自身的开发其实也都是由 specification 驱动进行展开。

image.png

Specification Driven Development

相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
10月前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
1091 41
|
存储 调度
分布式锁设计问题之云存储的最佳实践中保障分布式锁的容错能力如何解决
分布式锁设计问题之云存储的最佳实践中保障分布式锁的容错能力如何解决
172 0
|
10月前
|
分布式计算 DataWorks 数据处理
产品测评 | 上手分布式Python计算服务MaxFrame产品最佳实践
MaxFrame是阿里云自研的分布式计算框架,专为大数据处理设计,提供高效便捷的Python开发体验。其主要功能包括Python编程接口、直接利用MaxCompute资源、与MaxCompute Notebook集成及镜像管理功能。本文基于MaxFrame最佳实践,详细介绍了在DataWorks中使用MaxFrame创建数据源、PyODPS节点和MaxFrame会话的过程,并展示了如何通过MaxFrame实现分布式Pandas处理和大语言模型数据处理。测评反馈指出,虽然MaxFrame具备强大的数据处理能力,但在文档细节和新手友好性方面仍有改进空间。
|
11月前
|
人工智能 分布式计算 数据处理
云产品评测:MaxFrame — 分布式Python计算服务的最佳实践与体验
阿里云推出的MaxFrame是一款高性能分布式计算平台,专为大规模数据处理和AI应用设计。它提供了强大的Python编程接口,支持分布式Pandas操作,显著提升数据处理速度(3-5倍)。MaxFrame在大语言模型数据处理中表现出色,具备高效内存管理和任务调度能力。然而,在开通流程、API文档及功能集成度方面仍有改进空间。总体而言,MaxFrame在易用性和计算效率上具有明显优势,但在开放性和社区支持方面有待加强。
181 9
|
消息中间件 网络协议 C#
C#使用Socket实现分布式事件总线,不依赖第三方MQ
`CodeWF.EventBus.Socket` 是一个轻量级的、基于Socket的分布式事件总线系统,旨在简化分布式架构中的事件通信。它允许进程之间通过发布/订阅模式进行通信,无需依赖外部消息队列服务。
C#使用Socket实现分布式事件总线,不依赖第三方MQ
|
消息中间件 存储 NoSQL
MQ的顺序性保证:顺序队列、消息编号、分布式锁,一文全掌握!
【8月更文挑战第24天】消息队列(MQ)是分布式系统的关键组件,用于实现系统解耦、提升可扩展性和可用性。保证消息顺序性是其重要挑战之一。本文介绍三种常用策略:顺序队列、消息编号与分布式锁,通过示例展示如何确保消息按需排序。这些方法各有优势,可根据实际场景灵活选用。提供的Java示例有助于加深理解与实践应用。
926 2
|
Kubernetes Go 数据库
go-zero 分布式事务最佳实践
go-zero 分布式事务最佳实践
|
存储 Java 数据库
Spring Boot与分布式事务的最佳实践
Spring Boot与分布式事务的最佳实践
|
存储 监控 开发者
分布式链路监控系统问题之系统拆分后链路追踪技术的问题如何解决
分布式链路监控系统问题之系统拆分后链路追踪技术的问题如何解决
176 0