本文将从数据质量,Griffin简介,Griffin架构,Griffin快速入门,Griffin批数据实战,Griffin流数据实战整合六个部分进行介绍,目的是带大家快速的入门数据质量管理工具的使用。本文档版权属于公众号:大数据流动 所有。未经授权,请勿转载与商用!考虑到抄袭问题,Griffin后续的高阶技术文章可能会付费,也希望大家能尽早加入数据治理、Griffin等相关技术群,我会将最新的文章与资料实时同步。
一、数据质量
数据质量管理(Data Quality Management),是指对数据从计划、获取、存储、共享、维护、应用、消亡生命周期的每个阶段里可能引发的各类数据质量问题,进行识别、度量、监控、预警等一系列管理活动,并通过改善和提高组织的管理水平使得数据质量获得进一步提高。
数据质量管理不是一时的数据治理手段,而是循环的管理过程。其终极目标是通过可靠的数据,提升数据在使用中的价值,并最终为企业赢得经济效益。
为什么会有数据质量管理呢?
大数据时代数据的核心不是“大”,而在于“有价值”,而有价值的关键在于“质量”。但现实是,数据往往存在很多问题:
- 数据无法匹配
- 数据不可识别
- 时效性不强
- 数据不一致
- 。。。。
那么,解决数据质量要达到什么目标呢?
总结来说就是可信和可用。
可信就是让数据具有实用性,准确性,及时性,完整性,有效性。
可用就是规范性和可读性。
数据质量可能不是数据治理的最核心部分,但可能会成为数据治理落地的做大障碍。
提高数据质量有多种方式,比如建立统一的数据标准、提高人员的意识与能力等等。
而一个提高数据质量的高生产力方式就是使用数据质量管理工具。
数据质量管理工具成熟的并不多,所以本文就不做无用的对比了,我们直接进入正题:Apache Griffin。
二、Griffin简介
Griffin是一个开源的大数据数据质量解决方案,由eBay开源,它支持批处理和流模式两种数据质量检测方式,是一个基于Hadoop和Spark建立的数据质量服务平台 (DQSP)。它提供了一个全面的框架来处理不同的任务,例如定义数据质量模型、执行数据质量测量、自动化数据分析和验证,以及跨多个数据系统的统一数据质量可视化。
Griffin于2016年12月进入Apache孵化器,Apache软件基金会2018年12月12日正式宣布Apache Griffin毕业成为Apache顶级项目。
Griffin官网地址:https://griffin.apache.org/
Github地址:https://github.com/apache/griffin
在eBay的数据质量管理实践中,需要花费很长时间去修复数据质量的问题,不管是批处理还是流处理,解决数据质量问题的时间都是巨大的,由此一个统一的数据质量系统就应运而生了。
在官网的定义中,Apache Griffin也早就更新为了批和流(Batch and Streaming)数据质量解决方案。Apache Griffin已经在朝着数据质量的统一管理平台而努力了。
Griffin主要有如下的功能特点:
- 度量:精确度、完整性、及时性、唯一性、有效性、一致性。
- 异常监测:利用预先设定的规则,检测出不符合预期的数据,提供不符合规则数据的下载。
- 异常告警:通过邮件或门户报告数据质量问题。
- 可视化监测:利用控制面板来展现数据质量的状态。
- 实时性:可以实时进行数据质量检测,能够及时发现问题。
- 可扩展性:可用于多个数据系统仓库的数据校验。
- 可伸缩性:工作在大数据量的环境中,目前运行的数据量约1.2PB(eBay环境)。
- 自助服务:Griffin提供了一个简洁易用的用户界面,可以管理数据资产和数据质量规则;同时用户可以通过控制面板查看数据质量结果和自定义显示内容。
Apache Giffin目前的数据源包括HIVE, CUSTOM, AVRO, KAFKA。Mysql和其他关系型数据库的扩展根据需要进行扩展。
当然Giffin也不是万能的,目前Griffin还是有很多的问题的,选择也要慎重:
Griffin的社区并不太活跃,可以共同讨论的人不多。
目前最新版本还是0.6,可能会有一些问题。
网上技术文档很少,当然这方面大数据流动也会不断的输出新的技术文档帮助大家。
三、Griffin架构
数据质量模块是大数据平台中必不可少的一个功能组件,以下Griffin作为一个开源的大数据数据质量解决方案,它支持批处理和流模式两种数据质量检测方式,可以从不同维度(比如离线任务执行完毕后检查源端和目标端的数据数量是否一致、源表的数据空值数量等)度量数据资产,从而提升数据的准确度、可信度。
在Griffin的架构中,主要分为Define、Measure和Analyze三个部分,如下图所示:
各部分的职责如下:
- Define:主要负责定义数据质量统计的维度,比如数据质量统计的时间跨度、统计的目标(源端和目标端的数据数量是否一致,数据源里某一字段的非空的数量、不重复值的数量、最大值、最小值、top5的值数量等)
- Measure:主要负责执行统计任务,生成统计结果
- Analyze:主要负责保存与展示统计结果
听起来有些晦涩,我们来看一下一个完整的Griffin任务的执行流程。
- 注册数据,把想要检测数据质量的数据源注册到griffin。
- 配置度量模型,可以从数据质量维度来定义模型,如:精确度、完整性、及时性、唯一性等。
- 配置定时任务提交spark集群,定时检查数据。
- 在门户界面上查看指标,分析数据质量校验结果。
Griffin 系统主要分为:数据收集处理层(Data Collection&Processing Layer)、后端服务层(Backend Service Layer)和用户界面(User Interface)
数据处理和存储层:
对于批量分析,数据质量模型将根据 hadoop 中的数据源计算 Spark 集群中的数据质量指标。
对于近实时分析,使用来自消息传递系统的数据,然后数据质量模型将基于 Spark 集群计算实时数据质量指标。对于数据存储,可以在后端使用Elasticsearch来满足前端请求。
Apache Griffin 服务:
项目有提供Restful 服务来完成 Apache Griffin 的所有功能,例如探索数据集、创建数据质量度量、发布指标、检索指标、添加订阅等。因此,开发人员可以基于这些 Web 开发自己的用户界面服务。
这种灵活性也让Griffin 得到了越来越多的应用。
四、Griffin快速入门
Griffin的最新版本为0.6.0,本文的安装部署也基于这个版本进行。
依赖准备
JDK (1.8 or later versions)
MySQL(version 5.6及以上)
Hadoop (2.6.0 or later)
Hive (version 2.x)
Spark (version 2.2.1)
Livy(livy-0.5.0-incubating)
ElasticSearch (5.0 or later versions)
大部分CDH已经自带,这里特别说一下Livy和ElasticSearch如何部署。
Livy是一个Spark的Rest服务器。
准备livy安装包。
- 将livy安装包解压到/opt/目录下
- 创建livy用户、log目录并将livy的home目录属主修改为livy:hadoop
useradd livy -g hadoopmkdir /var/log/livymkdir /var/run/livychown livy:hadoop /var/log/livychown livy:hadoop /var/run/livychown -R livy:hadoop /opt/cloudera/apache-livy-0.6.0-incubating-bin/
3.进入livy home目录,在conf目录下创建livy.conf、livy-env.sh、spark-blacklist.conf配置文件
livy.conf、livy-env.sh、spark-blacklist.conf
4.修改配置文件livy.conf,添加如下内容
livy.spark.master = yarn livy.spark.deployMode = cluster livy.environment = production livy.impersonation.enabled = truelivy.server.csrf_protection.enabled falselivy.server.port = 8998livy.server.session.timeout = 3600000livy.server.recovery.mode = recovery livy.server.recovery.state-store=filesystem livy.server.recovery.state-store.url=/tmp/livy
5.修改配置文件livy-env.sh,增加hadoop和Spark的配置信息,如下
export JAVA_HOME=/usr/java/jdk1.8.0_181export HADOOP_HOME=/opt/cloudera/parcels/CDH/lib/hadoopexport SPARK_CONF_DIR=/etc/spark2/confexport SPARK_HOME=/opt/cloudera/parcels/SPARK2-2.3.0.cloudera2-1.cdh6.3.2.p0.1041012/lib/spark2export HADOOP_CONF_DIR=/etc/hadoop/confexport LIVY_LOG_DIR=/var/log/livyexport LIVY_PID_DIR=/var/run/livyexport LIVY_SERVER_JAVA_OPTS="-Xmx2g"
6.修改配置文件spark-blacklist.conf
# Configuration override / blacklist. Defines a list of properties that users are not allowed# to override when starting Spark sessions.## This file takes a list of property names (one per line). Empty lines and lines starting with "#"# are ignored.## Disallow overriding the master and the deploy mode.spark.master spark.submit.deployMode# Disallow overriding the location of Spark cached jars.spark.yarn.jarspark.yarn.jarsspark.yarn.archive# Don't allow users to override the RSC timeout.livy.rsc.server.idle-timeout
- core-site.xml 的群集范围高级配置代码段(安全阀)”配置项增加如下内容
<property> <name>hadoop.proxyuser.livy.groups</name> <value>*</value></property><property> <name>hadoop.proxyuser.livy.hosts</name> <value>*</value></property>
- 8.在HDFS上创建livy的home目录
sudo -u hdfs hadoop fs -mkdir /user/livy sudo -u hdfs hadoop fs -chown livy:supergroup /user/livy
- 9、启动livy服务
livy-server start
elasticsearch5安装,安装包也已下载在资料包中。
wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.6.15.tar.gz# tar -zxvf elasticsearch-5.6.15# cd elasticsearch-5.6.15# sh ./bin/elasticsearch
配置准备
1、首先在mysql中初始化quartz数据库,这里需要用到脚本Init_quartz_mysql_innodb.sql。
脚本可以加griffin群,领取资料包下载。
mysql -u <username> -p <password> < Init_quartz_mysql_innodb.sql
2、Hadoop和Hive:
从Hadoop服务器拷贝配置文件到Livy服务器上,这里假设将配置文件放在/usr/data/conf目录下。
在Hadoop服务器上创建/home/spark_conf目录,并将Hive的配置文件hive-site.xml上传到该目录下:
#创建/home/spark_conf目录hadoop fs -mkdir -p /home/spark_conf#上传hive-site.xmlhadoop fs -put hive-site.xml /home/spark_conf/
3、设置环境变量:
#!/bin/bashexport JAVA_HOME=/data/jdk1.8.0_192#spark目录export SPARK_HOME=/usr/data/spark-2.1.1-bin-2.6.3#livy命令目录export LIVY_HOME=/usr/data/livy/bin#hadoop配置文件目录export HADOOP_CONF_DIR=/usr/data/conf
4、配置启动Livy
更新livy/conf下的livy.conf配置文件:
livy.server.host = 127.0.0.1livy.spark.master = yarnlivy.spark.deployMode = clusterlivy.repl.enable-hive-context = true
启动livy:
livy-server start
5、Elasticsearch配置:
在ES里创建griffin索引:
curl -XPUT http://es:9200/griffin -d '{ "aliases": {}, "mappings": { "accuracy": { "properties": { "name": { "fields": { "keyword": { "ignore_above": 256, "type": "keyword" } }, "type": "text" }, "tmst": { "type": "date" } } } }, "settings": { "index": { "number_of_replicas": "2", "number_of_shards": "5" } } } '
接下来进行源码编译打包。
Griffin的源码结构很清晰,主要包括griffin-doc、measure、service和ui四个模块,其中griffin-doc负责存放Griffin的文档,measure负责与spark交互,执行统计任务,service使用spring boot作为服务实现,负责给ui模块提供交互所需的restful api,保存统计任务,展示统计结果。
源码导入构建完毕后,需要修改配置文件,具体修改的配置文件如下:
application.properties:mysql,hive,es配置
quartz.properties
sparkProperties.json
配置文件修改好后,在idea里的terminal里执行如下maven命令进行编译打包:
mvn -Dmaven.test.skip=true clean install
命令执行完成后,会在service和measure模块的target目录下分别看到service-0.6.0.jar和measure-0.6.0.jar两个jar,将这两个jar分别拷贝到服务器目录下。
1、使用如下命令将measure-0.4.0.jar这个jar上传到HDFS的/griffin文件目录里:
#改变jar名称mv measure-0.6.0.jar griffin-measure.jar#上传griffin-measure.jar到HDFS文件目录里hadoop fs -put measure-0.6.0.jar /griffin/
2、运行service-0.6.0.jar,启动Griffin管理后台:
nohup java -jar service-0.6.0.jar>service.out 2>&1 &
几秒钟后,我们可以访问Apache Griffin的默认UI(默认情况下,spring boot的端口是8080)。
http://IP:8080
部分结果展示界面如下: