25 机器学习相关参考文献及推荐阅读

简介: 25 机器学习相关参考文献及推荐阅读
参考文献:
  • 高等数学第六版上下册,同济大学数学系编;
  • 微积分概念发展史,[美] 卡尔·B·波耶 著,唐生 译;
  • 概率论与数理统计,高教版,盛骤等编;
  • 浙大版概率论与数理统计电子PPT课件;
  • 数理统计学简史,陈希孺院士著;

(极力推荐上书,相信每一个学概率统计的朋友都有必要看一看,同时,此书也是正态分布的前后今生这一系列的主要参考)

推荐阅读
目录
相关文章
|
4月前
|
机器学习/深度学习 数据采集 算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
|
6月前
|
机器学习/深度学习 人工智能 缓存
人工智能平台PAI产品使用合集之机器学习PAI实践参考在哪里
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
机器学习/深度学习
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
Coursera 吴恩达Machine Learning(机器学习)课程 |第五周测验答案(仅供参考)
|
机器学习/深度学习 人工智能 数据挖掘
ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)
ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)
ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)
|
机器学习/深度学习 数据挖掘 计算机视觉
ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)(一)
ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)
|
机器学习/深度学习
机器学习实战(Machine Learning in Action)参考答案以及原始数据
数据以及参考code在官网下载即可 https://www.manning.com/books/machine-learning-in-action 如果下载不了可以从这里下载:名称 MLiA_SourceCode.
1223 0
|
11天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
38 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
59 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练

热门文章

最新文章

下一篇
无影云桌面