03 微积分 - 积分

简介: 03 微积分 - 积分

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。

不定积分的定义

不定积分的定义

牛顿-莱布尼茨公式


目录
相关文章
|
5月前
高等数学II-知识点(2)——定积分、积分上限函数、牛顿-莱布尼茨公式、定积分的换元、定积分的分部积分法
高等数学II-知识点(2)——定积分、积分上限函数、牛顿-莱布尼茨公式、定积分的换元、定积分的分部积分法
51 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2015-06-24 积分不等式)
(AMM. Problems and Solutions. 2015. 01) Let $f$ be a twice continuously differentiable function from $[0,1]$ into $\bbR$.
592 0
【数值分析】复化积分公式
 对于积分: 只要找到被积公式的原函数F(x),利用牛顿莱普利兹公式有: 但是,实际使用这种求积分的方法往往是有困难的,因为大量的被积函数的原函数是不能用初等函数表示的;另外,当f(x)是由测量或数值计算给出的一张数据表时,牛顿莱普利兹公式也无法直接运用,因此有必要研究积分的数值计算问题。
1445 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2014-06-18 积分、微分不等式)
设 $f$ 为 $[0,1]$ 上的连续正函数, 且 $\dps{f^2(t)\leq 1+2\int_0^t f(s)\rd s}$. 证明: $f(t)\leq 1+t$.   证明: 设 $\dps{F(t)=\int_0^t f(s)\rd s}$, 则 $F(0)=0$, 且 $...
604 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2014-06-20 积分号下求导)
设 $f\in C(-\infty,+\infty)$, 定义 $\dps{F(x)=\int_a^b f(x+t)\cos t\rd t}$, $a\leq x\leq b$. (1) 证明: $F$ 在 $[a,b]$ 上可导; (2) 计算 $F'(x)$.
593 0
[再寄小读者之数学篇](2014-06-18 微分、积分中值定理一起来)
设 $f$ 在 $[0,1]$ 上可微, 且满足条件 $\dps{f(1)=3\int_0^{1/3} e^{x-1}f(x)\rd x}$, 证明: 存在 $\xi\in (0,1)$, 使得 $f(\xi)+f'(\xi)=0$.
804 0
伽罗瓦的遗书-论群、方程和阿贝尔积分
伽罗瓦的遗书-论群、方程和阿贝尔积分   下载提示: 点击链接后, 拉到最下端, 看见 ”正在获取下载地址“, 等待后点击”中国电信下载“即可.
751 0
[再寄小读者之数学篇](2014-06-03 一个积分的计算)
试计算 $\dps{\int_0^{\cfrac{\pi}{2}}\cfrac{x^2}{\sin^2x}\rd x}$.    解答: $$\beex \bea \int_0^{\cfrac{\pi}{2}}\cfrac{x^2}{\sin^2x}\rd x &=-\int_0^{\cfrac{...
641 0