时间、空间复杂度的例题详解(下)

简介: 时间、空间复杂度的例题详解(下)

根据时间、空间复杂度解题

消失的数字

问题描述:

数组nums包含从0到n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗?

这里给大家把链接奉上,可以先挑战一下试试。

https://leetcode-cn.com/problems/missing-number-lcci/

思路分析:

首先很简单的做法是暴力遍历,但是效率不够高,可能会超时,所以这种做法可行只要不出问题都可以作出来,就不再过多赘述。

思路一:

从0到n,丢失了一个数字,我们可以把从0到n的数字先全部加起来,之后用这个值减去所有的数字,就可以知道这个丢失的数字是多少了。

int missingNumber(int* nums, int numsSize) {
    int N = numsSize;//用N来记录方便代码书写
    int sum = ((0 + N) * (N + 1)) / 2;//等茶树列前n项和
    for (int i = 0; i < N; i++)//减值循环
    {
        sum = sum - nums[i];
    }
    return sum;//返回值为sum即为丢失的数字。
}

该题解代码时间复杂度为O(N),空间复杂度为O(1)。

在这里是可以通过的,我们具体解释看注释。

思路二:我们之前学过异或符号,得到了一个结论相同为0,相异为1。那么我们就可以得到两个相同的数字异或起来得到的值就是0。0异或任何数字又都是该数字,那么我们就可以让0去异或从0到n,再去异或所有的数,最后得到的值就是丢失的那个数字。

int missingNumber(int* nums, int numsSize)
{
  int N = numsSize;//N来记录方便代码书写
  int F = 0;//定义F为0,用来异或
  for (int i = 0; i <= N; i++)//异或从0到n的所有数字循环
  {
    F ^= i;
  }
  for (int i = 0; i < N; i++)//再去异或所有数字的循环
  {
    F ^= nums[i];
  }
  return F;//得到的F即为丢失的数字返回即可。
}

该题解代码同样是时间复杂度为O(N),空间复杂度为O(1)。

可以看到在这里是通过的,具体解释请看代码。

移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

链接给大家奉上可以先尝试一下:

https://leetcode.cn/problems/remove-element/

题解思路:已经规定不能使用额外空间,那么我们可以用双指针的方法来解这道题目。

int removeElement(int* nums, int numsSize, int val){
    int src=0;//快指针(下标)
    int dst=0;//慢指针(下标)
    while(src<numsSize)//移除循环
    {
        if(nums[src]!=val)//快指针遍历,若不等于移除值,将快指针指向值赋给慢指针
        {
            nums[dst]=nums[src];
            dst++;
            src++;
        }
        else//除不相等情况,为相等情况,快指针直接遍历过去
        {
            src++;
        }
    }
    return dst;//返回新数组长度。
}

在这里,时间复杂度是O(N),空间复杂度为O(1)。

具体代码解释请看注释。

删除有序数组中的重复项

给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。

考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过:

更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不重要。

返回 k 。

链接奉上:

https://leetcode.cn/problems/remove-duplicates-from-sorted-array/description/

int removeDuplicates(int* nums, int numsSize) {
    int j=1;//快指针遍历
    int i=1;//慢指针记录
    for(j=1;j<numsSize;j++)//移除循环
    {
        if(nums[j]!=nums[i-1])//快指针遍历值不等于前一项慢指针记录值时
        //将该快指针指向值赋值给慢指针当前项值
        //相等情况快指针直接遍历过去
        {
            nums[i]=nums[j];
            i++;
        }
    }
    return i;
}

在这里同样用双指针方法,时间复杂度为O(N),空间复杂度为O(1)。

合并两个有序数组

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。

请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。

注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

链接给大家奉上:

https://leetcode.cn/problems/merge-sorted-array/description/

int compar(const void* e1,const void* e2)
{
    return (*(int*)e1-*(int*)e2);
}
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n){
    int i=0;
    int j=0;
    for(i=m;i<m+n;i++)
    {
        nums1[i]=nums2[j];
        j++;
    }
    qsort(nums1,m+n,sizeof(int),compar);
}

在这里我们先用nums2数组将nums1数组充满,时间复杂度为O(n),qsort函数的时间复杂度为 O(n log n),该代码中n=m+n,所以该代码时间复杂度为 O(n + (m+n) log (m+n))。空间复杂度为O(1)。由于本题所使用解题代码思路十分简单,就不再注释。

本章内容分享到此,感谢各位观看。

目录
相关文章
|
7月前
|
存储 算法 C语言
时间和空间复杂度
时间和空间复杂度
61 0
|
7月前
|
算法 测试技术 C#
【二分查找】【区间合并】LeetCode2589:完成所有任务的最少时间
【二分查找】【区间合并】LeetCode2589:完成所有任务的最少时间
|
2月前
|
存储 算法
时间与空间复杂度(详解)(下)
时间与空间复杂度(详解)(下)
39 3
|
2月前
|
机器学习/深度学习 算法
时间与空间复杂度(详解)(上)
时间与空间复杂度(详解)(上)
45 1
|
4月前
|
机器学习/深度学习 存储 算法
算法时间复杂度分析
这篇文章讲解了如何分析算法的时间复杂度,包括关注循环执行次数最多的代码段、总复杂度的确定、嵌套代码复杂度的计算方法,并提供了大O阶的推导步骤和常见时间复杂度的列表,同时还介绍了空间复杂度的概念及其重要性。
|
6月前
|
人工智能 算法 C语言
数据结构与算法——简单排序-冒泡排序、插入排序,时间复杂度下界(图示、代码、时间复杂度、定理)
数据结构与算法——简单排序-冒泡排序、插入排序,时间复杂度下界(图示、代码、时间复杂度、定理)
44 0
|
7月前
|
C++
2589. 完成所有任务的最少时间(区间取点——贪心or线段树)
2589. 完成所有任务的最少时间(区间取点——贪心or线段树)
|
7月前
动态规划之使用最小花费爬楼梯【LeetCode】
动态规划之使用最小花费爬楼梯【LeetCode】
算法的时间、空间复杂度如何比较?
算法的时间、空间复杂度如何比较?
|
7月前
|
存储 算法 索引
算法题解-汇总区间
算法题解-汇总区间

热门文章

最新文章