大数据亦需要数据虚拟化

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

摘要:为了实现大数据所勾画出的美好愿景,你需要在数据层和基础设施层等基础架构中对数据进行抽象化的工作。在云上的大数据拥有跨越大量节点、集群和层的众多潜在功能服务层,而这些节点、集群和层很容易变得不堪重负。为了应对这些问题。首先,你应该规划一个全面的云数据虚拟化基础设施。虚拟化云分析法是新时代中的大数据典范。作为一种集成方法,它能够确保大数据的统一访问、建模、部署、优化和管理成为一种异构资源。

在云上的大数据拥有跨越大量节点、集群和层的众多潜在功能服务层,而这些节点、集群和层很容易变得不堪重负。为了应对这些问题。首先,你应该规划一个全面的云数据虚拟化基础设施。虚拟化云分析法是新时代中的大数据典范。作为一种集成方法,它能够确保大数据的统一访问、建模、部署、优化和管理成为一种异构资源。

与任何虚拟化一样,数据虚拟化是一种允许用户访问、管理和优化异构基础架构的方法,就好像它们是一种单一、且在逻辑上是统一的资源一样。这使得用户能够从一些服务、功能或其他资源的内部部署中对外部界面进行抽象化。

与支持逻辑上统一的访问、查询、报告、预测分析,以及针对关系型、Hadoop、NoSQL等不同后端数据库应用的任何“SQL-虚拟化”解决方法相同,数据虚拟化的核心是抽象层。当然,数据虚拟化可能会转而依靠其他的基础设施虚拟化层,例如存储与服务器平台。在某些情况下,数据虚拟化可能会在地理上和多云环境中进行扩张。

在我们讨论的众多层中,虚拟化无疑是这些枯燥数据话题的一个缩影。但是如果你希望自己的大数据云平台能够解决以下业务需求,那么它们无疑是最基础的。这些具体的业务需求是:

·基于弹性、灵活拓扑结构的先进分析型资源

·汲取源自任何来源、格式和方案的纯消费性资源

·能够留存、聚合、处理任何动静结合信息的“延迟-灵敏”资源

·在价值链中扩展,在私有云[注]和公有云[注]中扩张的联合资源

·能够让你通过现有工具和应用,调整、扩展和升级后端数据平台的无缝互操作资源

是的,这是一项艰巨的任务。毫无疑问,数据虚拟化和虚拟的基础架构实践起来比说起来困难的多。此外,部署、管理和优化的工作也需要花费大量的资金。

基于云的大数据需要越来越复杂的虚拟化基础设施。对于大部分大数据专业人员而言,解决这一难题就如同天文学家试图绘制出宇宙中的暗物质一样困难。他们知道这项工作既重要,但又十分的乏味和烦琐。实际上,大数据专业人员更喜欢从事Hadoop和NoSQL的研究,因为它们正在新的技术领域中闪烁着最耀眼的光芒。

随着大数据应用范围的不断拓展,用户未来几乎必定要沿着虚拟化这条路前行。混合大数据云难以处理的异质性将推动用户选择这一方向。在私有云中,大数据平台融合需要一个虚拟化架构,以将新的方案与之前的投资相关联起来。然而,融合将会阻止用户持续的平台现代化与迁移尝试,妨碍用户将创新和适合的平台整合到云中,阻碍厂商的“产品-改良”循环。除非将所有的大数据方案都放到“通用的”公有云服务上,否则用户在多种组合方案中需要虚拟化公有云、私有云和混合云[注]架构的访问。

当然,能沿着“数据-虚拟化”路线走多远,将取决于用户业务需求和大数据环境的复杂性。此外,还取决于用户对风险、复杂性和困难的承受程度。在未来,随着分析模型、规则和大数据云上汇聚的信息日益复杂,平台将成为虚拟化访问、执行和管理的核心。在这一新领域内,MapReduce将成为关键的(但并不是唯一的)开发框架。此外,MapReduce还将成为针对内联分析和交易计算的虚拟化架构的一部分。不过,目前这一虚拟化架构虽然涵盖范围更广,但是大部分仍没有被明确定义。

迄今为止,还没有人能够对这些将云与大数据世界拼接在一起的层、界面和抽象化展开进一步概述,而这也是一项摆在我们面前的艰巨任务。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
250 7
|
1月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
43 2
|
1月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
82 1
|
21天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
40 4
|
27天前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
24 4
|
1月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
58 3
|
1月前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
65 2
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
101 2
|
1月前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
101 2
|
1月前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。