114 python高级 - multiprocessing

简介: 114 python高级 - multiprocessing

如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序?

由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。

multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:

#coding=utf-8
from multiprocessing import Process
import os
# 子进程要执行的代码
def run_proc(name):
    print('子进程运行中,name= %s ,pid=%d...' % (name, os.getpid()))
if __name__=='__main__':
    print('父进程 %d.' % os.getpid())
    p = Process(target=run_proc, args=('test',))
    print('子进程将要执行')
    p.start()
    p.join()
    print('子进程已结束')

运行结果:

说明:

  • 创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。
  • join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。

Process语法结构如下:

Process([group [, target [, name [, args [, kwargs]]]]])

  • target:表示这个进程实例所调用对象;
  • args:表示调用对象的位置参数元组;
  • kwargs:表示调用对象的关键字参数字典;
  • name:为当前进程实例的别名;
  • group:大多数情况下用不到;

Process类常用方法:

  • is_alive():判断进程实例是否还在执行;
  • join([timeout]):是否等待进程实例执行结束,或等待多少秒;
  • start():启动进程实例(创建子进程);
  • run():如果没有给定target参数,对这个对象调用start()方法时,就将执行对象中的run()方法;
  • terminate():不管任务是否完成,立即终止;

Process类常用属性:

  • name:当前进程实例别名,默认为Process-N,N为从1开始递增的整数;
  • pid:当前进程实例的PID值;

实例1

from multiprocessing import Process
import os
from time import sleep
# 子进程要执行的代码
def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age,os.getpid()))
        print(kwargs)
        sleep(0.5)
if __name__=='__main__':
    print('父进程 %d.' % os.getpid())
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    print('子进程将要执行')
    p.start()
    sleep(1)
    p.terminate()
    p.join()
    print('子进程已结束')

运行结果:

父进程 21378.
子进程将要执行
子进程运行中,name= test,age=18 ,pid=21379...
{'m': 20}
子进程运行中,name= test,age=18 ,pid=21379...
{'m': 20}
子进程已结束

实例2

#coding=utf-8
from multiprocessing import Process
import time
import os
#两个子进程将会调用的两个方法
def  worker_1(interval):
    print("worker_1,父进程(%s),当前进程(%s)"%(os.getppid(),os.getpid()))
    t_start = time.time()
    time.sleep(interval) #程序将会被挂起interval秒
    t_end = time.time()
    print("worker_1,执行时间为'%0.2f'秒"%(t_end - t_start))
def  worker_2(interval):
    print("worker_2,父进程(%s),当前进程(%s)"%(os.getppid(),os.getpid()))
    t_start = time.time()
    time.sleep(interval)
    t_end = time.time()
    print("worker_2,执行时间为'%0.2f'秒"%(t_end - t_start))
#输出当前程序的ID
print("进程ID:%s"%os.getpid())
#创建两个进程对象,target指向这个进程对象要执行的对象名称,
#args后面的元组中,是要传递给worker_1方法的参数,
#因为worker_1方法就一个interval参数,这里传递一个整数2给它,
#如果不指定name参数,默认的进程对象名称为Process-N,N为一个递增的整数
p1=Process(target=worker_1,args=(2,))
p2=Process(target=worker_2,name="dongGe",args=(1,))
#使用"进程对象名称.start()"来创建并执行一个子进程,
#这两个进程对象在start后,就会分别去执行worker_1和worker_2方法中的内容
p1.start()
p2.start()
#同时父进程仍然往下执行,如果p2进程还在执行,将会返回True
print("p2.is_alive=%s"%p2.is_alive())
#输出p1和p2进程的别名和pid
print("p1.name=%s"%p1.name)
print("p1.pid=%s"%p1.pid)
print("p2.name=%s"%p2.name)
print("p2.pid=%s"%p2.pid)
#join括号中不携带参数,表示父进程在这个位置要等待p1进程执行完成后,
#再继续执行下面的语句,一般用于进程间的数据同步,如果不写这一句,
#下面的is_alive判断将会是True,在shell(cmd)里面调用这个程序时
#可以完整的看到这个过程,大家可以尝试着将下面的这条语句改成p1.join(1),
#因为p2需要2秒以上才可能执行完成,父进程等待1秒很可能不能让p1完全执行完成,
#所以下面的print会输出True,即p1仍然在执行
p1.join()
print("p1.is_alive=%s"%p1.is_alive())

执行结果:

进程ID:19866
p2.is_alive=True
p1.name=Process-1
p1.pid=19867
p2.name=dongGe
p2.pid=19868
worker_1,父进程(19866),当前进程(19867)
worker_2,父进程(19866),当前进程(19868)
worker_2,执行时间为'1.00'秒
worker_1,执行时间为'2.00'秒
p1.is_alive=False
目录
相关文章
|
3月前
|
数据采集 并行计算 安全
Python并发编程:多进程(multiprocessing模块)
在处理CPU密集型任务时,Python的全局解释器锁(GIL)可能会成为瓶颈。为了充分利用多核CPU的性能,可以使用Python的multiprocessing模块来实现多进程编程。与多线程不同,多进程可以绕过GIL,使得每个进程在自己的独立内存空间中运行,从而实现真正的并行计算。
|
3月前
|
Unix Linux API
Python multiprocessing模块
Python multiprocessing模块
|
4月前
|
数据采集 Java C语言
Python面向对象的高级动态可解释型脚本语言简介
Python是一种面向对象的高级动态可解释型脚本语言。
39 3
|
4月前
|
机器学习/深度学习 数据采集 算法
Python编程语言进阶学习:深入探索与高级应用
【7月更文挑战第23天】Python的进阶学习是一个不断探索和实践的过程。通过深入学习高级数据结构、面向对象编程、并发编程、性能优化以及在实际项目中的应用,你将能够更加熟练地运用Python解决复杂问题,并在编程道路上走得更远。记住,理论知识只是基础,真正的成长来自于不断的实践和反思。
|
4月前
|
机器学习/深度学习 数据采集 人工智能
Python 是一种广泛使用的高级编程语言
【7月更文挑战第17天】Python 是一种广泛使用的高级编程语言
43 2
|
4月前
|
存储 算法 Python
“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度
【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**
45 1
|
4月前
|
存储 算法 调度
惊呆了!Python高级数据结构堆与优先队列,竟然能这样优化你的程序性能!
【7月更文挑战第10天】Python的heapq模块实现了堆和优先队列,提供heappush和heappop等函数,支持O(log n)时间复杂度的操作。优先队列常用于任务调度和图算法,优化性能。例如,Dijkstra算法利用最小堆加速路径查找。堆通过列表存储,内存效率高。示例展示了添加、弹出和自定义优先级元素。使用堆优化程序,提升效率。
63 2
|
4月前
|
数据库 数据安全/隐私保护 C++
Python并发编程实战:线程(threading)VS进程(multiprocessing),谁才是并发之王?
【7月更文挑战第10天】Python并发对比:线程轻量级,适合I/O密集型任务,但受GIL限制;进程绕过GIL,擅CPU密集型,但通信成本高。选择取决于应用场景,线程利于数据共享,进程利于多核利用。并发无“王者”,灵活运用方为上策。
59 2
|
4月前
|
算法 调度 Python
Python高手必备!堆与优先队列的高级应用,掌握它们,技术路上畅通无阻!
【7月更文挑战第9天】Python的heapq模块实现了堆数据结构,提供O(log n)操作如`heappush`和`heappop`。堆是完全二叉树,用于优先队列,保证最大/最小元素快速访问。例如,最小堆弹出最小元素,常用于Dijkstra算法找最短路径、Huffman编码压缩数据及任务调度。通过`heappush`和`heappop`可创建和管理优先队列,如`(优先级, 数据)`元组形式。理解并运用这些概念能优化算法效率,解决复杂问题。
48 2
|
4月前
|
消息中间件 网络协议 网络安全
解锁Python Socket新姿势,进阶篇带你玩转高级网络通信技巧!
【7月更文挑战第26天】掌握Python Socket后,探索网络通信高级技巧。本指南深化Socket编程理解,包括非阻塞I/O以提升并发性能(示例使用`select`),SSL/TLS加密确保数据安全,以及介绍高级网络协议库如HTTP、WebSocket和ZeroMQ,简化复杂应用开发。持续学习,成为网络通信专家!
48 0
下一篇
无影云桌面