IP 地址、网络号和主机号、ABC三类、ip地址可分配问题、子网掩码、子网划分

简介: IP 地址、网络号和主机号、ABC三类、ip地址可分配问题、子网掩码、子网划分

1、 IP 地址: 网络之间互连的协议,是由4个字节(32位二进制)组成的逻辑上的地址。

  • 将32位二进制进行分组,分成4组,每组8位(1个字节)。【ip地址通常使用十进制表示】
  • ip地址分成四组之后,在逻辑上,分成网络号和主机号

2、网络号和主机号:

  • 网络号代表某个完整的范围 [范围]
  • 主机号代表某台独立的主机 [精确地址]

-- 在这个范围内某个主机

-- 网络号范围越大,容纳的主机越多


3、ABC三类:

  • 通过ip地址第一个字节组划分:ABC类
  • A类要求第一个字节的第一位是0 第一个字节的范围【0-127】
  • B类要求第一个字节的第一二位是10 第一个字节的范围【128-191】
  • C类要求第一个字节的第一二三位是110 第一个字节的范围【192-224】


  • 为什么要要划分成ABC类?
  • 划分成ABC类后,就知道网络号和主机号的范围了,A类网络号占一个字节,B类网络号占两个字节,C类网络号占3个字节.
  • 一个字节8位,A类可以划分2^8=255个网络,每一个网络可以容纳255x255x255=16581375个主机地址
    (粗略计算网络号不考虑ip地址A类第一位固定是0,实际是126,不是255哈哈
  • B类可以划分255x255=6535个网络,每个网络可以容纳255x255=6535个主机地址
  • C类可以划分255x255x255个网络,每个网络可以容纳255个主机地址

为什么要分成ABC类?解决实际的应用问题,杜绝ip地址的浪费。例如某个小县城区才6000个人,那么给它B类ip地址即可,给A类就超级浪费了。


4、ip地址可分配问题:

  • 网络地址(全0) 和广播地址(全1) 不可分配。


■ 不能指派给主机或路由器接口的地址:

  • A类网络号 0 和 127
  • 主机号为"全0",这是网络地址
  • 主机号为""全1",这是广播地址

题目:一个网络,主机号有x位,则这个网络可以分配给主机的IP地址有多少个?

解:该网络共包含2x个地址,去除网络地址和广播地址,可分配给主机的IP地址是2x—2个

例如,一个C类网络,可分配给主机的IP地址为2^8—2=254个


5、子网掩码:

① 为什么会出现子网掩码?

ABC类网分类中的网络段+主机段分别占几位的依据就是子网掩码

● 自然划分情况下,A类网络号占一个字节(网络号是占8位),B类网络号占两个字节(网络号占16位),C类网络号占三个字节(网络号占32位)。

但是随着ip地址的不够用,需要子网掩码来划分子网,让网络号的位数可以比较灵活,可以是9位,15位等等,不再是自然划分的位数。

子网掩码作用:用于识别IP地址中的网络号和主机号的位数.

  • A类的子网掩码:255.0.0.0

255是第一个字节【11111111】,A类【11111111 0000000000 00000000 00000000】跟ip地址进行与运算,结果为1的是网络号,0的是主机号。

  • B类的子网掩码:255.255.0.0 C类的子网掩码:255.255.255.0

③ 表示方法:

  • 32位二进制数字,在子网掩码中,对应于网络号部分用“1”表示,主机号部分用“0”表示。
    如IP地址1.1.1.1 的子网掩码是255.0.0.0,表示这个地址的前8位是网络号。
  • 网络后缀法表示子网掩码,即"/<网络号位数>",如 138.96.0.1/18 表示网络号18位,主机号14位.


6、子网划分

① 为什么会出现子网划分?

解决实际的应用问题,杜绝ip地址的浪费。例如某个公司才需要100台主机,C类的话可以提供255台主机,造成了155台主机号的浪费。

② 子网划分的核心思想?

网络号不变,借用主机号来产生新的网络号

③ 子网划分的步骤:

  • 第一步,考虑借用几位作为子网号
  • 第二步,确定每个子网的子网掩码
  • 第三步,确定子网的网络地址(网络地址是主机号全0的地址)


如果本文对你有帮助的话记得给一乐点个赞哦,感谢!

目录
相关文章
|
5月前
|
负载均衡 网络协议 网络性能优化
动态IP代理技术详解及网络性能优化
动态IP代理技术通过灵活更换IP地址,广泛应用于数据采集、网络安全测试等领域。本文详细解析其工作原理,涵盖HTTP、SOCKS代理及代理池的实现方法,并提供代码示例。同时探讨配置动态代理IP后如何通过智能调度、负载均衡、优化协议选择等方式提升网络性能,确保高效稳定的网络访问。
641 2
|
1月前
|
域名解析 API PHP
VM虚拟机全版本网盘+免费本地网络穿透端口映射实时同步动态家庭IP教程
本文介绍了如何通过网络穿透技术让公网直接访问家庭电脑,充分发挥本地硬件性能。相比第三方服务受限于转发带宽,此方法利用自家宽带实现更高效率。文章详细讲解了端口映射教程,包括不同网络环境(仅光猫、光猫+路由器)下的设置步骤,并提供实时同步动态IP的两种方案:自建服务器或使用三方API接口。最后附上VM虚拟机全版本下载链接,便于用户在穿透后将服务运行于虚拟环境中,提升安全性与适用性。
|
3月前
|
安全 网络安全 UED
为何长效代理静态IP是网络管理的关键要素
在信息化时代,静态长效IP代理对网络管理至关重要。它能提升网络服务质量,确保远程办公、视频会议等应用的稳定性和连续性;减少延迟和网络拥堵,加快数据传输;提高网络安全,便于设置访问权限,防止未授权访问。91HTTP高质量代理IP服务商助力高效信息获取。
67 23
|
4月前
|
网络协议 Unix Linux
深入解析:Linux网络配置工具ifconfig与ip命令的全面对比
虽然 `ifconfig`作为一个经典的网络配置工具,简单易用,但其功能已经不能满足现代网络配置的需求。相比之下,`ip`命令不仅功能全面,而且提供了一致且简洁的语法,适用于各种网络配置场景。因此,在实际使用中,推荐逐步过渡到 `ip`命令,以更好地适应现代网络管理需求。
128 11
|
3月前
|
人工智能 安全 算法
IP地址、SSL与DeepSeek:现代网络安全的三角防线
在数字化浪潮中,IP地址、SSL协议与AI大模型DeepSeek分别作为网络通信的标识、加密护盾和智能防御核心,共同重塑网络安全范式。本文从技术原理、实践挑战与防御策略三个维度解析其融合价值与未来趋势。IP地址是设备的唯一标识,但易被攻击者利用;SSL通过加密确保数据安全;DeepSeek则通过AI实现智能威胁检测。三者的协同作用,为网络安全提供了全新的解决方案。未来将面临量子计算、AI对抗升级等挑战,需加速技术创新与安全意识提升,构建“协议可信+地址可控+AI赋能”的三维防线,以应对日益复杂的网络安全环境。
|
5月前
|
域名解析 网络协议 关系型数据库
【网络原理】——带你认识IP~(长文~实在不知道取啥标题了)
IP协议详解,IP协议管理地址(NAT机制),IP地址分类、组成、特殊IP地址,MAC地址,数据帧格式,DNS域名解析系统
|
5月前
|
数据采集 安全 搜索推荐
HTTP代理IP纯净度 提升用户网络体验的核心竞争力
随着互联网发展,使用HTTP动态代理IP的需求日益增加。高纯净度的代理IP在隐私与安全、网络体验和业务运营方面至关重要。它能保护用户信息、提高数据安全性、确保访问速度和连接稳定,并提升业务效率与信誉度。
89 2
|
6月前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
136 6
|
6月前
|
网络协议 安全 文件存储
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问,即使IP地址变化,也能通过DDNS服务保持连接。适用于家庭网络远程访问设备及企业临时或移动设备管理,提供便捷性和灵活性。示例代码展示了如何使用Python实现基本的DDNS更新。尽管存在服务可靠性和安全性挑战,DDNS仍极大提升了网络资源的利用效率。
526 6
|
6月前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
353 3

热门文章

最新文章