Docker学习重点(8)~Docker网络

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
实时计算 Flink 版,5000CU*H 3个月
简介: Docker学习重点(8)~Docker网络

一、Docker网络--理解Docker0

  • 准备工作:清空所有环境
  • 将docker 的所有镜像、容器先删除,干干净净!


1、查看本地网络信息 ip addr

● 可见有三个网卡信息:

  • lo:本地(回环)地址;
  • ens:虚拟机或阿里云服务器(内网)地址;
  • docker0:docker网络地址。


● 问题:docker 是如何处理容器网络访问的?


2、查看docker容器启动时的内部网络 ip addr

● Docker容器没有ip addr命令:exec ip addr 报错:

OCI runtime exec failed: exec failed: container_linux.go:380: starting container process caused: exec: "ip": executable file not found in $PATH: unknown

《exec failed: exec failed..... exec: “ip“(Docker容器没有ip addr命令:ex(Docker容器没有ip addr命令:exec ip addr 报错)的解决》


☺ ip addr 命令成功执行:

[root@iZwz9535z41cmgcpkm7i81Z ~]# docker exec -it tomcat01 ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
6: eth0@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
    link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
       valid_lft forever preferred_lft forever


3、docker 容器和linux 系统宿主机可以相互ping 通

# tomcat 容器 ping 通宿主机(外网地址 120.76.136.52, 内网地址 172.22.26.169)
root@f1cfb81dedfd:/usr/local/tomcat# ping 120.76.136.52
PING 120.76.136.52 (120.76.136.52) 56(84) bytes of data.
64 bytes from 120.76.136.52: icmp_seq=1 ttl=63 time=2.97 ms
64 bytes from 120.76.136.52: icmp_seq=2 ttl=63 time=2.89 ms
root@f1cfb81dedfd:/usr/local/tomcat# ping 172.22.26.169
PING 172.22.26.169 (172.22.26.169) 56(84) bytes of data.
64 bytes from 172.22.26.169: icmp_seq=1 ttl=64 time=0.088 ms
64 bytes from 172.22.26.169: icmp_seq=2 ttl=64 time=0.072 ms
64 bytes from 172.22.26.169: icmp_seq=3 ttl=64 time=0.086 ms
# 宿主机ping 通 tomcat 容器(tomcat 的网卡地址 172.17.0.2)
[root@iZwz9535z41cmgcpkm7i81Z ~]# ping 172.17.0.2
PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.106 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.083 ms


4、docker 容器互联的原理:

docker每启动一个容器,就会分配一个ip,只要安装了docker,就会有一个网卡docker0,桥接模式,使用的时veth-pair技术。

  • docker 容器内部,查询ip信息:

● 容器 ip 命令,没有找到:bash: ping: command not found

  • 解决:安装iputils-ping,命令:apt -y install iputils-ping
  • 宿主机,查询ip信息:

■ 再启动一个容器, 宿主机查看ip信息:发现又多了一对网卡

[root@iZwz9535z41cmgcpkm7i81Z ~]# docker exec -it tomcat02 ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
16: eth0@if17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
    link/ether 02:42:ac:11:00:03 brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 172.17.0.3/16 brd 172.17.255.255 scope global eth0
       valid_lft forever preferred_lft forever


可以看到容器内ip与本机ip成对出现,这就是veth-pair技术。

  • 我们发现这个容器带来网卡,都是一对对的。
  • evth—pair 就是一对的虚拟设备接口,他们都是成对出现的,一段连着协议,一段彼此相连。正因为有这个特性,evth—pair 充当一个桥梁,连接各种虚拟网络设备的。
  • openstac,Docker容器之间的连接,OVS的连接,都是使用 evth-pair 技术 。


5、容器与容器之间可以相互ping 通,使用evth-pair 技术:

# tomcat01 容器ping tomcat02 容器
root@f1cfb81dedfd:/usr/local/tomcat# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
6: eth0@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
    link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
       valid_lft forever preferred_lft forever
root@f1cfb81dedfd:/usr/local/tomcat# ping 172.17.0.3
PING 172.17.0.3 (172.17.0.3) 56(84) bytes of data.
64 bytes from 172.17.0.3: icmp_seq=1 ttl=64 time=0.125 ms
# tomcat02 容器ping tomcat01 容器
root@23254b923487:/usr/local/tomcat# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
16: eth0@if17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
    link/ether 02:42:ac:11:00:03 brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 172.17.0.3/16 brd 172.17.255.255 scope global eth0
       valid_lft forever preferred_lft forever
root@23254b923487:/usr/local/tomcat# ping 172.17.0.2
PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.136 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.105 ms


docker0相当于一个路由器,各个容器都与docker0相连,容器之间的通信通过路由器来转发。

■ 结论:容器tomcat01和容器tomcat02是公用的一个路由器,docker0。

  • 所有的容器不指定网络的情况下,都是docker0路由的,docker会给我们的容器分配一个默认的可用IP

  • docker0:


  • evth-pair 技术:
  • Docker 使用的是Linux的桥接,宿主机中 是一个docker 容器的网桥 docker0。
  • Docker中的所有网络接口都是虚拟的(虚拟转发的效率高),相当于内网传递;
  • 只要删除容器,对应网络就会删除。


二、容器互联技术 ● --link

1、(高可用问题)需求: database url = ip;

每次重启容器或Linux,ip就会变化,固定的ip互联网络就会失效,如何使用服务名来连接,而不考虑ip?

---可以通过名字来访问容器。


2、测试使用容器名来ping

[root@iZwz9535z41cmgcpkm7i81Z ~]# docker exec -it tomcat02 ping tomcat01
ping: tomcat01: Name or service not known
  • 容器之间无法通过容器名来连接;如何解决?
# 通过 --link 就可以解决了网络连通问题(通过名字连通)
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker run -d -P --name tomcat03 --link tomcat02 tomcat:9.0
81d38e78eea0756c654af6b51ac626ad7c086a7fe56589303ddb108fd0091f8d
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker exec -it tomcat03 ping tomcat02 
PING tomcat02 (172.17.0.3) 56(84) bytes of data.
64 bytes from tomcat02 (172.17.0.3): icmp_seq=1 ttl=64 time=0.182 ms
64 bytes from tomcat02 (172.17.0.3): icmp_seq=2 ttl=64 time=0.082 ms
# 但是反向却无法链接通!!!(因为创建tomcat02 的时候,并没有--link tomcat03)
# tomcat02 想通过名字 ping tomcat03
root@23254b923487:/usr/local/tomcat# ping tomcat03
ping: tomcat03: Name or service not known


3、docker network 命令:

  • 探究命令 inspect

  • inspect tomcat03:


  • 进入tomcat03,查看它的主机文件hosts:


4、tomcat03能够通过容器名链接tomcat02的原理:

通过--link,tomcat03在自己容器hosts文件中配置了tomcat02 的ip信息!

[root@node1 ~]# docker exec -it tomcat03 cat /etc/hosts
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.17.0.3  tomcat02 23254b923487
172.17.0.4  373a2f03bd8d
# --link 在咱的hosts 配置中增加了一个 172.17.0.3 tomcat02 23254b923487   直接写死的

● 本质就是修改host映射,--link已经摒弃;建议实现使用自定义网络实现!

  • 不使用 --link,不使用网桥docker0
  • 因为:docker0的问题:不支持容器名连接访问!


三、容器互联技术 ● 自定义网络

● network 命令:

[root@iZwz9535z41cmgcpkm7i81Z ~]# docker network --help 
Usage:  docker network COMMAND
Manage networks
Commands:
  connect     Connect a container to a network
  create      Create a network
  disconnect  Disconnect a container from a network
  inspect     Display detailed information on one or more networks
  ls          List networks
  prune       Remove all unused networks
  rm          Remove one or more networks
Run 'docker network COMMAND --help' for more information on a command.


1、查看所有的docker网络 docker network ls

[root@iZwz9535z41cmgcpkm7i81Z ~]# docker network ls
NETWORK ID     NAME      DRIVER    SCOPE
8ddb7e9846c6   bridge    bridge    local
48e785b7efb3   host      host      local
7e07c5b5ae34   none      null      local


2、网络模式:

  • bridge : 桥接(默认,自己创建也使用bridge 模式)
  • host : 和宿主即共享网络
  • none : 不配置网络
  • container:容器网络连通!(很少用,局限性很大!)


3、测试自定义网络

# 原先启动容器,其实是默认使用docker0 [--net bridge],桥接模式
docker run -d -P --name tomcat01 tomcat:9.0
# 实际上是
docker run -d -P --name tomcat01 --net bridge tomcat:9.0
# docker0 特点:默认,但是对于域名无法访问,不过可以通过--link打通连接
  • 创建自定义的网络 docker create
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker network create --help
Usage:  docker network create [OPTIONS] NETWORK
Create a network
Options:
      --attachable           Enable manual container attachment
      --aux-address map      Auxiliary IPv4 or IPv6 addresses used by Network driver (default map[])
      --config-from string   The network from which to copy the configuration
      --config-only          Create a configuration only network
  -d, --driver string        Driver to manage the Network (default "bridge")
      --gateway strings      IPv4 or IPv6 Gateway for the master subnet
      --ingress              Create swarm routing-mesh network
      --internal             Restrict external access to the network
      --ip-range strings     Allocate container ip from a sub-range
      --ipam-driver string   IP Address Management Driver (default "default")
      --ipam-opt map         Set IPAM driver specific options (default map[])
      --ipv6                 Enable IPv6 networking
      --label list           Set metadata on a network
  -o, --opt map              Set driver specific options (default map[])
      --scope string         Control the network's scope
      --subnet strings       Subnet in CIDR format that represents a network segment
----------------------------------------------------------------------------------------------------------------------------
# 命令参数详解
[root@node1 ~]# docker network create --help
Usage:  docker network create [OPTIONS] NETWORK
Create a network
Options:
      --attachable           Enable manual container attachment
      --aux-address map      Auxiliary IPv4 or IPv6 addresses used by Network driver (default map[])
      --config-from string   The network from which to copy the configuration
      --config-only          Create a configuration only network
  -d, --driver string        Driver to manage the Network (default "bridge")
      --gateway strings      IPv4 or IPv6 Gateway for the master subnet
      --ingress              Create swarm routing-mesh network
      --internal             Restrict external access to the network
      --ip-range strings     Allocate container ip from a sub-range
      --ipam-driver string   IP Address Management Driver (default "default")
      --ipam-opt map         Set IPAM driver specific options (default map[])
      --ipv6                 Enable IPv6 networking
      --label list           Set metadata on a network
  -o, --opt map              Set driver specific options (default map[])
      --scope string         Control the network's scope
      --subnet strings       Subnet in CIDR format that represents a network segment
  • 创建一个网络 mynet:

  • 自定义网络创建完成:

  • 检查创建的网络:


  • 创建容器的时候,连接自定义的网络mynet
  • 不同容器同处于同一网络下mynet,维护好了容器间的关系


4、通过名字,容器之间相互ping

# 现在不使用 --link,也可以ping 名字了
# 通过名字 tomcat-net-01 ping tomcat-net-02
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker exec -it tomcat-net-01 ping tomcat-net-02
PING tomcat-net-02 (192.168.0.3) 56(84) bytes of data.
64 bytes from tomcat-net-02.mynet (192.168.0.3): icmp_seq=1 ttl=64 time=0.102 ms
64 bytes from tomcat-net-02.mynet (192.168.0.3): icmp_seq=2 ttl=64 time=0.064 ms
64 bytes from tomcat-net-02.mynet (192.168.0.3): icmp_seq=3 ttl=64 time=0.062 ms
64 bytes from tomcat-net-02.mynet (192.168.0.3): icmp_seq=4 ttl=64 time=0.070 ms
^C
--- tomcat-net-02 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.062/0.074/0.102/0.016 ms
# 通过名字 tomcat-net-02 ping tomcat-net-01
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker exec -it tomcat-net-02 ping tomcat-net-01
PING tomcat-net-01 (192.168.0.2) 56(84) bytes of data.
64 bytes from tomcat-net-01.mynet (192.168.0.2): icmp_seq=1 ttl=64 time=0.123 ms
64 bytes from tomcat-net-01.mynet (192.168.0.2): icmp_seq=2 ttl=64 time=0.074 ms
^C
--- tomcat-net-01 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.074/0.098/0.123/0.024 ms


5、自定义网络的意义:

我们自定义的网络docker都已经帮我们维护好了对应的关系。可以实现不同集群使用不同的网络,保证集群网络的安全和健康。

  • 如Redis集群在192.160.0.0/16网段下,mysql集群在192.161.0.0/16网段下。


四、网络连通

1、场景:tomcat01 ping tomcat-net-01,无法ping 通


2、使用docker network connect

[root@iZwz9535z41cmgcpkm7i81Z ~]# docker network connect  mynet tomcat01
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker network inspect mynet


■ 可以看到mynet将tomcat01容器添加到自己网络中:

  • 测试打通 tomcat01-mynet
  • 连通之后就是将 tomcat01 放到了 mynet 网络下?#一个容器两个ip地址!
  • 阿里云服务:公网ip 私网ip

■ 网卡与网卡无法打通,但是容器和网卡之间可以打通。


■ 不同网段(卡) 上的容器互相 ping 通

  • 通过 network connect
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker exec -it tomcat01 ping tomcat-net-01
\\PING tomcat-net-01 (192.168.0.2) 56(84) bytes of data.
64 bytes from tomcat-net-01.mynet (192.168.0.2): icmp_seq=1 ttl=64 time=0.115 ms
64 bytes from tomcat-net-01.mynet (192.168.0.2): icmp_seq=2 ttl=64 time=0.063 ms
64 bytes from tomcat-net-01.mynet (192.168.0.2): icmp_seq=3 ttl=64 time=0.062 ms
^C
--- tomcat-net-01 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.062/0.080/0.115/0.024 ms
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker exec -it tomcat-net-01 ping tomcat01
PING tomcat01 (192.168.0.4) 56(84) bytes of data.
64 bytes from tomcat01.mynet (192.168.0.4): icmp_seq=1 ttl=64 time=0.088 ms
64 bytes from tomcat01.mynet (192.168.0.4): icmp_seq=2 ttl=64 time=0.064 ms


6、结论:

想要跨网络操作别人,就需要使用docker network connect 连通!


五、实战部署Redis集群

1、集群,需要建立自己的网卡

2、分片+高可用+负载均衡

3、shell 脚本! 来启动这6个容器


4、部署Redis集群过程如下:

# 准备工作,移除掉系统其他的容器,避免启动过多的容器导致系统奔溃
docker rm -f $(docker ps -a)
# 创建redis 网卡
docker network create redis --subnet 172.38.0.0/16
# 检查一下redis 网卡的信息
docker network ls
docker network inspect redis
  • shell脚本创建六个redis配置
# 通过脚本创建六个redis配置
for port in $(seq 1 6); \
do \
mkdir -p /mydata/redis/node-${port}/conf
touch /mydata/redis/node-${port}/conf/redis.conf
cat << EOF >/mydata/redis/node-${port}/conf/redis.conf
port 6379
cluster-enabled yes
cluster-config-file nodes.conf
cluster-node-timeout 5000
cluster-announce-ip 172.38.0.1${port}
cluster-announce-port 6379
cluster-announce-bus-port 16379
appendonly yes
EOF
done
  • 查看一下结点:
[root@iZwz9535z41cmgcpkm7i81Z ~]# cd /mydata/redis/
[root@iZwz9535z41cmgcpkm7i81Z redis]# ls
node-1  node-2  node-3  node-4  node-5  node-6
  • 启动结点容器:
docker run -p 637${port}:6379 -p 1637${port}:16379 --name redis-${port} \
 -v /mydata/redis/node-${port}/data:/data \
 -v /mydata/redis/node-${port}/conf/redis.conf:/etc/redis/redis.conf \
 -d --net redis --ip 172.38.0.1${port} redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf
  • 一个一个启动的方式:
docker run -p 6371:6379 -p 16371:16379 --name redis-1 \
 -v /mydata/redis/node-1/data:/data \
 -v /mydata/redis/node-1/conf/redis.conf:/etc/redis/redis.conf \
 -d --net redis --ip 172.38.0.11 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf 
  docker run -p 6372:6379 -p 16372:16379 --name redis-2 \
 -v /mydata/redis/node-2/data:/data \
 -v /mydata/redis/node-2/conf/redis.conf:/etc/redis/redis.conf \
 -d --net redis --ip 172.38.0.12 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf 
 docker run -p 6373:6379 -p 16373:16379 --name redis-3 \
 -v /mydata/redis/node-3/data:/data \
 -v /mydata/redis/node-3/conf/redis.conf:/etc/redis/redis.conf \
 -d --net redis --ip 172.38.0.13 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf 
 docker run -p 6374:6379 -p 16374:16379 --name redis-4 \
 -v /mydata/redis/node-4/data:/data \
 -v /mydata/redis/node-4/conf/redis.conf:/etc/redis/redis.conf \
 -d --net redis --ip 172.38.0.14 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf 
 docker run -p 6375:6379 -p 16375:16379 --name redis-5 \
 -v /mydata/redis/node-5/data:/data \
 -v /mydata/redis/node-5/conf/redis.conf:/etc/redis/redis.conf \
 -d --net redis --ip 172.38.0.15 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf 
 docker run -p 6376:6379 -p 16376:16379 --name redis-6 \
 -v /mydata/redis/node-6/data:/data \
 -v /mydata/redis/node-6/conf/redis.conf:/etc/redis/redis.conf \
 -d --net redis --ip 172.38.0.16 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf
  • 集群:
docker exec -it redis-1 /bin/sh
redis-cli --cluster create 172.38.0.11:6379 172.38.0.12:6379 172.38.0.13:6379 172.38.0.14:6379 172.38.0.15:6379 172.38.0.
16:6379 --cluster-replicas 1
>>> Performing hash slots allocation on 6 nodes...
Master[0] -> Slots 0 - 5460
Master[1] -> Slots 5461 - 10922
Master[2] -> Slots 10923 - 16383
Adding replica 172.38.0.15:6379 to 172.38.0.11:6379
Adding replica 172.38.0.16:6379 to 172.38.0.12:6379
Adding replica 172.38.0.14:6379 to 172.38.0.13:6379
M: 0bd617e83421999d29fb55c25f798d3600495e76 172.38.0.11:6379
   slots:[0-5460] (5461 slots) master
M: 8b91a88e817dcff1a5f82d1ea577acf77799bd95 172.38.0.12:6379
   slots:[5461-10922] (5462 slots) master
M: d5baadcc8b4db9ae93f9c01ed2a204e7d84d0619 172.38.0.13:6379
   slots:[10923-16383] (5461 slots) master
S: 8806e059a5c76468aed86fddc1ec9f006c0de203 172.38.0.14:6379
   replicates d5baadcc8b4db9ae93f9c01ed2a204e7d84d0619
S: 155b2b1ef7443e87b944cd745c22584aa5660628 172.38.0.15:6379
   replicates 0bd617e83421999d29fb55c25f798d3600495e76
S: 33e7146e8084a4cb93b1d057612f6a46652e357f 172.38.0.16:6379
   replicates 8b91a88e817dcff1a5f82d1ea577acf77799bd95
Can I set the above configuration? (type 'yes' to accept): yes
>>> Nodes configuration updated
>>> Assign a different config epoch to each node
>>> Sending CLUSTER MEET messages to join the cluster
Waiting for the cluster to join
...
>>> Performing Cluster Check (using node 172.38.0.11:6379)
M: 0bd617e83421999d29fb55c25f798d3600495e76 172.38.0.11:6379
   slots:[0-5460] (5461 slots) master
   1 additional replica(s)
S: 8806e059a5c76468aed86fddc1ec9f006c0de203 172.38.0.14:6379
   slots: (0 slots) slave
   replicates d5baadcc8b4db9ae93f9c01ed2a204e7d84d0619
S: 33e7146e8084a4cb93b1d057612f6a46652e357f 172.38.0.16:6379
   slots: (0 slots) slave
   replicates 8b91a88e817dcff1a5f82d1ea577acf77799bd95
M: d5baadcc8b4db9ae93f9c01ed2a204e7d84d0619 172.38.0.13:6379
   slots:[10923-16383] (5461 slots) master
   1 additional replica(s)
S: 155b2b1ef7443e87b944cd745c22584aa5660628 172.38.0.15:6379
   slots: (0 slots) slave
   replicates 0bd617e83421999d29fb55c25f798d3600495e76
M: 8b91a88e817dcff1a5f82d1ea577acf77799bd95 172.38.0.12:6379
   slots:[5461-10922] (5462 slots) master
   1 additional replica(s)
[OK] All nodes agree about slots configuration.
>>> Check for open slots...
>>> Check slots coverage...
[OK] All 16384 slots covered.
  • 查询集群信息:
/data # redis-cli -c
127.0.0.1:6379> cluster info
cluster_state:ok
cluster_slots_assigned:16384
cluster_slots_ok:16384
cluster_slots_pfail:0
cluster_slots_fail:0
cluster_known_nodes:6
cluster_size:3
cluster_current_epoch:6
cluster_my_epoch:1
cluster_stats_messages_ping_sent:315
cluster_stats_messages_pong_sent:323
cluster_stats_messages_sent:638
cluster_stats_messages_ping_received:318
cluster_stats_messages_pong_received:315
cluster_stats_messages_meet_received:5
cluster_stats_messages_received:638
127.0.0.1:6379> cluster nodes
8806e059a5c76468aed86fddc1ec9f006c0de203 172.38.0.14:6379@16379 slave d5baadcc8b4db9ae93f9c01ed2a204e7d84d0619 0 1651111739893 4 connected
33e7146e8084a4cb93b1d057612f6a46652e357f 172.38.0.16:6379@16379 slave 8b91a88e817dcff1a5f82d1ea577acf77799bd95 0 1651111741407 6 connected
d5baadcc8b4db9ae93f9c01ed2a204e7d84d0619 172.38.0.13:6379@16379 master - 0 1651111740000 3 connected 10923-16383
155b2b1ef7443e87b944cd745c22584aa5660628 172.38.0.15:6379@16379 slave 0bd617e83421999d29fb55c25f798d3600495e76 0 1651111740000 5 connected
8b91a88e817dcff1a5f82d1ea577acf77799bd95 172.38.0.12:6379@16379 master - 0 1651111740906 2 connected 5461-10922
0bd617e83421999d29fb55c25f798d3600495e76 172.38.0.11:6379@16379 myself,master - 0 165111739000 1 connected 0-5460
  • 测试设置key-value 键值对:
127.0.0.1:6379> set a b
-> Redirected to slot [15495] located at 172.38.0.13:6379
OK


  • 再开一个窗口,测试高可用性
  • stop掉当前集群中正在运行的redis-3,若是高可用架构搭建成功,则主机宕掉,从机会替代主机的
# 再开一个窗口,停止当前正在运行的容器redis-3
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker stop redis-3
redis-3
[root@iZwz9535z41cmgcpkm7i81Z ~]# docker ps
CONTAINER ID   IMAGE                    COMMAND                  CREATED             STATUS             PORTS                                              NAMES
5c15f03d7a55   redis:5.0.9-alpine3.11   "docker-entrypoint.s…"   About an hour ago   Up About an hour   0.0.0.0:6376->6379/tcp, 0.0.0.0:16376->16379/tcp   redis-6
f375fc1baaec   redis:5.0.9-alpine3.11   "docker-entrypoint.s…"   About an hour ago   Up About an hour   0.0.0.0:6375->6379/tcp, 0.0.0.0:16375->16379/tcp   redis-5
7e335e02b33d   redis:5.0.9-alpine3.11   "docker-entrypoint.s…"   About an hour ago   Up About an hour   0.0.0.0:6374->6379/tcp, 0.0.0.0:16374->16379/tcp   redis-4
4e721d20f8fd   redis:5.0.9-alpine3.11   "docker-entrypoint.s…"   About an hour ago   Up About an hour   0.0.0.0:6372->6379/tcp, 0.0.0.0:16372->16379/tcp   redis-2
e438501487a1   redis:5.0.9-alpine3.11   "docker-entrypoint.s…"   2 hours ago         Up 2 hours         0.0.0.0:6371->6379/tcp, 0.0.0.0:16371->16379/tcp   redis-1
# 测试在容器redis-3 被停止掉了,是否从机会替代上去
172.38.0.13:6379> get a
Could not connect to Redis at 172.38.0.13:6379: Host is unreachable
(32.33s)
not connected> 
/data # redis-cli -c
127.0.0.1:6379> get a
-> Redirected to slot [15495] located at 172.38.0.14:6379
"b"
172.38.0.14:6379>
  • 宕掉redis-3之后


  • 至此证明docker 搭建redis 集群完成!


☺ 参考来源:

狂神的B站视频《【狂神说Java】Docker最新超详细版教程通俗易懂》 https://www.bilibili.com/video/BV1og4y1q7M4

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
8天前
|
NoSQL 关系型数据库 MySQL
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
100 56
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
|
20天前
|
安全 Docker 容器
docker的默认网络模式有哪些
Docker 默认网络模式包括:1) bridge:默认模式,各容器分配独立IP,可通过名称或IP通信;2) host:容器与宿主机共享网络命名空间,性能最优但有安全风险;3) none:容器隔离无网络配置,适用于仅需本地通信的场景。
34 6
|
23天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
56 7
|
1月前
|
安全 网络安全 数据安全/隐私保护
利用Docker的网络安全功能来保护容器化应用
通过综合运用这些 Docker 网络安全功能和策略,可以有效地保护容器化应用,降低安全风险,确保应用在安全的环境中运行。同时,随着安全威胁的不断变化,还需要持续关注和研究新的网络安全技术和方法,不断完善和强化网络安全保护措施,以适应日益复杂的安全挑战。
42 5
|
1月前
|
Docker 容器
【赵渝强老师】Docker的None网络模式
Docker容器在网络方面实现了逻辑隔离,提供了四种网络模式:bridge、container、host和none。其中,none模式下容器具有独立的网络命名空间,但不包含任何网络配置,仅能通过Local Loopback网卡(localhost或127.0.0.1)进行通信。适用于不希望容器接收任何网络流量或运行无需网络连接的特殊服务。
|
1月前
|
Docker 容器
【赵渝强老师】Docker的Host网络模式
Docker容器在网络环境中是隔离的,可通过配置不同网络模式(如bridge、container、host和none)实现容器间或与宿主机的网络通信。其中,host模式使容器与宿主机共享同一网络命名空间,提高性能但牺牲了网络隔离性。
|
1月前
|
Kubernetes Docker 容器
【赵渝强老师】Docker的Container网络模式
Docker容器在网络环境中彼此隔离,但可通过配置不同网络模式实现容器间通信。其中,container模式使容器共享同一网络命名空间,通过localhost或127.0.0.1互相访问,提高传输效率。本文介绍了container模式的特点及具体示例。
|
1月前
|
Linux Docker 容器
【赵渝强老师】Docker的Bridge网络模式
本文介绍了Docker容器的网络隔离机制及其四种网络模式:bridge、container、host和none。重点讲解了默认的bridge模式,通过示例演示了如何创建自定义bridge网络并配置容器的网络信息。文中还附有相关图片和视频讲解,帮助读者更好地理解Docker网络的配置和使用方法。
|
7月前
|
分布式计算 Java Linux
【深入浅出Docker原理及实战】「原理实战体系」零基础+全方位带你学习探索Docker容器开发实战指南(Dockerfile使用手册)
Docker 是一套构建在 Linux 内核之上的高级工具,旨在帮助开发人员和运维人员更轻松地交付应用程序和依赖关系,实现跨系统和跨主机的部署。使用安全且轻量级的容器环境来实现这一目标。容器可以手动创建,也可以通过编写 Dockerfile 自动创建。开发人员和运维人员可以将应用程序及其依赖打包到容器中,实现应用程序的可移植性和环境一致性。
264 5
【深入浅出Docker原理及实战】「原理实战体系」零基础+全方位带你学习探索Docker容器开发实战指南(Dockerfile使用手册)
|
2月前
|
Linux 应用服务中间件 Shell
docker学习--docker容器镜像常用命令大全(简)
本文档详细介绍了Docker中的镜像命令与容器管理命令。镜像命令部分涵盖了镜像搜索、下载、上传等操作;容器管理命令则包括了容器的创建、启动、停止、删除及日志查看等功能。通过具体示例,帮助用户更好地理解和使用Docker相关命令。
187 0