Python算法——选择排序

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: Python算法——选择排序

选择排序(Selection Sort)是一种简单的排序算法,它的基本思想是在未排序的部分中选择最小(或最大)的元素,然后将其放在已排序部分的末尾。选择排序不同于冒泡排序,它不需要反复交换元素,因此在某些情况下可能比冒泡排序更快。本文将详细介绍选择排序的工作原理和Python实现。

选择排序的工作原理

选择排序的基本思想是:

  1. 从未排序的数组中找到最小的元素。
  2. 将最小元素与未排序部分的第一个元素交换位置。
  3. 重复上述两步,不断扩大已排序部分,缩小未排序部分,直到整个数组有序。

选择排序的核心思想是每一轮选择一个最小的元素,并将它交换到已排序部分的末尾。这一过程持续多轮,每轮选择一个最小的元素,直到整个数组有序。

下面是一个示例,演示选择排序的过程。我们以升序排序为例:

原始数组:[64, 25, 12, 22, 11]

  1. 第一轮选择,最小元素为 11,交换位置后数组变为:[11, 25, 12, 22, 64]
  2. 第二轮选择,最小元素为 12,交换位置后数组变为:[11, 12, 25, 22, 64]
  3. 第三轮选择,最小元素为 22,交换位置后数组变为:[11, 12, 22, 25, 64]
  4. 第四轮选择,最小元素为 25,交换位置后数组变为:[11, 12, 22, 25, 64]
  5. 第五轮选择,最小元素为 64,交换位置后数组不变:[11, 12, 22, 25, 64]

Python实现选择排序

下面是Python中的选择排序实现:

def selection_sort(arr):
    n = len(arr)
    for i in range(n):
        min_index = i
        for j in range(i+1, n):
            if arr[j] < arr[min_index]:
                min_index = j

        arr[i], arr[min_index] = arr[min_index], arr[i]
  • arr 是待排序的数组。
  • n 表示数组的长度。
  • 外层循环 for i in range(n) 用于控制遍历的轮数。
  • 内层循环 for j in range(i+1, n) 用于查找未排序部分中的最小元素。
  • min_index 用于记录最小元素的索引,如果找到更小的元素,更新 min_index。
  • 在内层循循环结束后,将最小元素与当前轮次的第一个元素交换位置。

    示例代码

    下面是一个使用Python进行选择排序的示例代码:
def selection_sort(arr):
    n = len(arr)
    for i in range(n):
        min_index = i
        for j in range(i+1, n):
            if arr[j] < arr[min_index]:
                min_index = j

        arr[i], arr[min_index] = arr[min_index], arr[i]

# 测试排序
arr = [64, 25, 12, 22, 11]
selection_sort(arr)
print("排序后的数组:", arr)

时间复杂度

选择排序的时间复杂度为 O(n^2),其中 n 是数组的长度。与冒泡排序一样,选择排序不是最高效的排序算法,但它是一种简单易懂的算法,适用于小型数据集。

总之,选择排序是一种简单的排序算法,通过选择最小元素并将其放在已排序部分的末尾,实现了排序数组的目标。了解选择排序有助于理解排序算法的基本原理,并为学习更高效的排序算法奠定了基础。

目录
相关文章
|
3天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
|
2天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
14天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
49 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
14天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
49 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
14天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
56 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
18天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
32 2
|
27天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
34 3
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
11天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
下一篇
无影云桌面