m基于FPGA的8FSK调制解调系统verilog实现,包含testbench测试文件

简介: m基于FPGA的8FSK调制解调系统verilog实现,包含testbench测试文件

1.算法仿真效果
vivado2019.2仿真结果如下:

78bd060d54ba8e791149017ccd27ded1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

将波形放大,看到如下效果:

46b51f25d13e9770e006a684eb6c1c35_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
8FSK(8-Frequency Shift Keying)是一种常用的数字调制方法,它通过在不同的频率上发送二进制数据来进行通信。8FSK在通信系统中被广泛应用,因为它具有较高的数据传输速率和较强的抗干扰能力。

   在8FSK中,每个二进制位被发送在一个特定的频率上。发送频率根据发送的数据位而变化,具体地说,发送的频率根据发送的二进制位的值确定。

  具体地,8FSK使用8个不同的频率来表示8个不同的二进制位。频率f0到f7对应于二进制位000到111。每个频率对应于一个特定的时间间隔,称为符号时间。在一个符号时间内,数据位被发送出去。在发送端,输入的二进制数据首先被分成两个比特一组,然后根据以下规则映射到相应的频率上:

000 - f0
001 - f1
010 - f2
011 - f3
100 - f4
101 - f5
110 - f6
111 - f7
以上是一种常见的映射方式,但也可以使用其他的映射方式。

   在接收端,8FSK信号被接收并解调,以恢复原始的二进制数据。解调器需要知道每个频率对应的二进制位,以便正确地恢复数据。解调器可以使用各种方法来实现,例如滤波器、频谱分析等。

   8FSK调制的基本原理可以用数学公式表示。假设输入的二进制数据为b(t),发送的频率为f(t),则调频信号s(t)可以表示为:

s(t) = Re[b(t)exp(j2πf(t))]

其中Re表示取实部,j表示虚数单位,π表示圆周率。

   在接收端,解调器需要对接收到的信号进行解调,以恢复出原始的二进制数据。解调可以使用各种方法来实现,例如包络检波、同步检测等。其中包络检波的基本原理是检测接收信号的包络线,以恢复出原始的数据。其数学公式可以表示为:

b(t) = Re[s(t)exp(-j2πf(t))]

8FSK调制具有以下优点:

较高的传输速率:由于使用了多个频率进行传输,因此可以实现较高的传输速率。
较强的抗干扰能力:由于使用了频率偏移键控,因此具有较强的抗干扰能力。
适用于多径传播环境:由于使用了不同的频率进行传输,因此可以适用于多径传播环境。
实现简单:相对于其他数字调制方法,8FSK的实现较为简单。
然而,8FSK调制也存在以下缺点:

频带利用率较低:由于使用了多个频率进行传输,因此频带利用率较低。
3.Verilog核心程序
````timescale 1ns / 1ps
//

//

module test_FSK;

reg i_clk;
reg i_rst;
reg[2:0]i_bits;
wire signed[15:0]o_carrier1;
wire signed[15:0]o_carrier2;
wire signed[15:0]o_carrier3;
wire signed[15:0]o_carrier4;
wire signed[15:0]o_carrier5;
wire signed[15:0]o_carrier6;
wire signed[15:0]o_carrier7;
wire signed[15:0]o_carrier8;
wire signed[31:0]o_de_fsk1;
wire signed[31:0]o_de_fsk2;
wire signed[31:0]o_de_fsk3;
wire signed[31:0]o_de_fsk4;
wire signed[31:0]o_de_fsk5;
wire signed[31:0]o_de_fsk6;
wire signed[31:0]o_de_fsk7;
wire signed[31:0]o_de_fsk8;
wire signed[15:0]o_fsk;
wire [2:0]o_bits;

FSK uut(
.i_clk(i_clk),
.i_rst(i_rst),
.i_bits(i_bits),
.o_carrier1(o_carrier1),
.o_carrier2(o_carrier2),
.o_carrier3(o_carrier3),
.o_carrier4(o_carrier4),
.o_carrier5(o_carrier5),
.o_carrier6(o_carrier6),
.o_carrier7(o_carrier7),
.o_carrier8(o_carrier8),
.o_fsk(o_fsk),
.o_de_fsk1(o_de_fsk1),
.o_de_fsk2(o_de_fsk2),
.o_de_fsk3(o_de_fsk3),
.o_de_fsk4(o_de_fsk4),
.o_de_fsk5(o_de_fsk5),
.o_de_fsk6(o_de_fsk6),
.o_de_fsk7(o_de_fsk7),
.o_de_fsk8(o_de_fsk8),
.o_bits(o_bits)
);

initial
begin
i_clk = 1'b1;
i_rst = 1'b1;

#1000
i_rst = 1'b0;

end
initial
begin
i_bits= 3'b000;

#3050
repeat(100)
begin
#700
i_bits= 3'b000;
#900
i_bits= 3'b011;
#880
i_bits= 3'b000;
#900
i_bits= 3'b001;
#700
i_bits= 3'b010;
#800
i_bits= 3'b100;
#800
i_bits= 3'b011;
#1600
i_bits= 3'b011;
#1600
i_bits= 3'b100;
#600
i_bits= 3'b110;
#700
i_bits= 3'b100;
#600
i_bits= 3'b101;
#1600
i_bits= 3'b111;
#1800
i_bits= 3'b010;
#1400
i_bits= 3'b01;
#1400
i_bits= 3'b101;
#1400
i_bits= 3'b100;

#1900
i_bits= 3'b101;
#1700
i_bits= 3'b101;
#700
i_bits= 3'b001;
#1700
i_bits= 3'b000;
#1800
i_bits= 3'b101;
#1600
i_bits= 3'b100;
#1400
i_bits= 3'b100;
#1600
i_bits= 3'b000;
end

end
always #5 i_clk=~i_clk;
endmodule
```

相关文章
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
3天前
|
JSON 前端开发 API
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
24 5
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
123 74
|
24天前
|
JavaScript NoSQL Java
基于SpringBoot+Vue实现的大学生体质测试管理系统设计与实现(系统源码+文档+数据库+部署)
面向大学生毕业选题、开题、任务书、程序设计开发、论文辅导提供一站式服务。主要服务:程序设计开发、代码修改、成品部署、支持定制、论文辅导,助力毕设!
36 2
|
24天前
|
小程序 前端开发 关系型数据库
uniapp跨平台框架,陪玩系统并发性能测试,小程序源码搭建开发解析
多功能一体游戏陪练、语音陪玩系统的开发涉及前期准备、技术选型、系统设计与开发及测试优化。首先,通过目标用户分析和竞品分析明确功能需求,如注册登录、预约匹配、实时语音等。技术选型上,前端采用Uni-app支持多端开发,后端选用PHP框架确保稳定性能,数据库使用MySQL保证数据一致性。系统设计阶段注重UI/UX设计和前后端开发,集成WebSocket实现语音聊天。最后,通过功能、性能和用户体验测试,确保系统的稳定性和用户满意度。
|
1月前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的16psk调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的16PSK调制解调系统的硬件测试版本。系统在原有仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比下的性能测试。16PSK通过改变载波相位传输4比特信息,广泛应用于高速数据传输。硬件测试操作详见配套视频。开发板使用及移植方法也一并提供。
37 6
|
1月前
|
消息中间件 监控 小程序
电竞陪玩系统架构优化设计,陪玩app如何提升系统稳定性,陪玩小程序平台的测试与监控
电竞陪玩系统架构涵盖前端(React/Vue)、后端(Spring Boot/php)、数据库(MySQL/MongoDB)、实时通信(WebSocket)及其他组件(Redis、RabbitMQ、Nginx)。通过模块化设计、微服务架构和云计算技术优化,提升系统性能与可靠性。同时,加强全面测试、实时监控及故障管理,确保系统稳定运行。
|
1月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的8PSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现8PSK调制解调系统,包含高斯信道、误码率统计、ILA数据采集和VIO在线SNR设置模块。通过硬件测试和Matlab仿真,展示了不同SNR下的星座图。8PSK调制通过改变载波相位传递信息,具有高频谱效率和抗干扰能力。开发板使用及程序移植方法详见配套视频和文档。
44 7
|
1月前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
159 69

热门文章

最新文章