Python最差实践

简介: Python最差实践

最近在看一些陈年老系统,其中有一些不好的代码习惯遗留下来的坑;加上最近自己也写了一段烂代码导致服务器负载飙升,所以就趁此机会总结下我看到过/写过的自认为不好的Python代码习惯,时刻提醒自己远离这些“最差实践”,避免挖坑。  


下面所举的例子中,有一部分会造成性能问题,有一部分会导致隐藏bug,或日后维护、重构困难,还有一部分纯粹是我认为不够pythonic。所以大家自行甄别,取精去糟吧。  


函数默认参数使用可变对象

这个例子我想大家应该在各种技术文章中见过许多遍了,也足以证明这是一个大坑。  


先看错误示范吧:


def use_mutable_default_param(idx=0, ids=[]):
    ids.append(idx)
    print(idx)
    print(ids)
use_mutable_default_param(idx=1)
use_mutable_default_param(idx=2)

输出:

1
[1]
2
[1, 2]

理解这其中的原因,最重要的是有两点:

函数本身也是一个对象,默认参数绑定于这个函数对象

append这类方法会直接修改对象,所以下次调用此函数时,其绑定的默认参数已经不再是空list了

正确的做法如下:

def donot_use_mutable_default_param(idx=0, ids=None):
    if ids is None:
        ids = []
    ids.append(idx)
    print(idx)
    print(ids)

try…except不具体指明异常类型


虽然在Python中使用try…except不会带来严重的性能问题,但是不加区分,直接捕获所有类型异常的做法,往往会掩盖掉其他的bug,造成难以追查的bug。  


一般的,我觉得应该尽量少的使用try…except,这样可以在开发期尽早的发现问题。即使要使用try…except,也应该尽可能的指定出要捕获的具体异常,并在except语句中将异常信息记入log,或者处理完之后,再直接raise出来。


关于dict的冗余代码

我经常能够看到这样的代码:

d = {}
datas = [1, 2, 3, 4, 2, 3, 4, 1, 5]
for k in datas:
    if k not in d:
        d[k] = 0 
    d[k] += 1

其实,完全可以使用collections.defaultdict这一数据结构更简单优雅的实现这样的功能:

default_d = defaultdict(lambda: 0)
datas = [1, 2, 3, 4, 2, 3, 4, 1, 5]
for k in datas:
    default_d[k] += 1

同样的,这样的代码:

# d is a dict
if 'list' not in d:
    d['list'] = []
d['list'].append(x)

完全可以用这样一行代码替代:

# d is a dict
d.setdefault('list', []).append(x)

同样的,下面这两种写法一看就是带有浓浓的C味儿:

# d is a dict
for k in d:
    v = d[k]
    # do something
# l is a list
for i in len(l):
    v = l[i]
    # do something

应该用更pythonic的写法:

# d is a dict
for k, v in d.iteritems():
    # do something
    pass
# l is a list
for i, v in enumerate(l):
    # do something
    pass

另外,enumerate其实还有个第二参数,表示序号从几开始。如果想要序号从1开始数起,可以使用enumerate(l, 1)。  


使用flag变量而不使用for…else语句

同样,这样的代码也很常见:

search_list = ['Jone', 'Aric', 'Luise', 'Frank', 'Wey']
found = False
for s in search_list:
    if s.startswith('C'):
        found = True
        # do something when found
        print('Found')
        break
if not found:
    # do something when not found
    print('Not found')

其实,用for…else更优雅:


search_list = ['Jone', 'Aric', 'Luise', 'Frank', 'Wey']
for s in search_list:
    if s.startswith('C'):
        # do something when found
        print('Found')
        break
else:
    # do something when not found
    print('Not found')

过度使用tuple unpacking

在Python中,允许对tuple类型进行unpack操作,如下所示:

1

2

# human = ('James', 180, 32)

name,height,age =human


这个特性用起来很爽,比写name=human[0]之类的不知道高到哪里去了。所以,这一特性往往被滥用,一个human在程序的各处通过上面的方式unpack。  


然而如果后来需要在human中插入一个表示性别的数据sex,那么对于所有的这种unpack都需要进行修改,即使在有些逻辑中并不会使用到性别。

# human = ('James', 180, 32)
name,height,age, _ = human
# or
# name, height, age, sex = human

有如下几种方式解决这一问题:  

老老实实写name=human[0]这种代码,在需要使用性别信息处加上sex=human[3]

使用dict来表示human

使用namedtuple

# human = namedtuple('human', ['name', 'height', 'age', 'sex'])
h = human('James', 180, 32, 0)
# then you can use h.name, h.sex and so on everywhere.

到处都是import *

import *是一种懒惰的行为,它不仅会污染当前的命名空间,并且还会使得pyflakes等代码检查工具失效。在后续查看代码或者debug的过程中,往往也很难从一堆import *中找到一个第三方函数的来源。  


可以说这种习惯是百害而无一利的。  


相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
67 3
|
2月前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
58 11
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
23天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
69 15
|
30天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
38 7
|
30天前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
1月前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
44 5
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
使用Python进行数据可视化:探索与实践
在数字时代的浪潮中,数据可视化成为了沟通复杂信息和洞察数据背后故事的重要工具。本文将引导读者通过Python这一强大的编程语言,利用其丰富的库函数,轻松入门并掌握数据可视化的基础技能。我们将从简单的图表创建开始,逐步深入到交互式图表的制作,最终实现复杂数据的动态呈现。无论你是数据分析新手,还是希望提升报告吸引力的专业人士,这篇文章都将是你的理想指南。
56 9
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
设计模式 缓存 开发者
Python中的装饰器:从入门到实践####
本文深入探讨了Python中强大的元编程工具——装饰器,它能够以简洁优雅的方式扩展函数或方法的功能。通过具体实例和逐步解析,文章不仅介绍了装饰器的基本原理、常见用法及高级应用,还揭示了其背后的设计理念与实现机制,旨在帮助读者从理论到实战全面掌握这一技术,提升代码的可读性、可维护性和复用性。 ####