为什么MaxCompute采用列式存储?列式存储和行式存储的主要区别在哪

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

1 为什么要按列存储

列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的。简单来说两者的区别就是如何组织表(翻译不好,直接抄原文了):

Ø  Row-based storage stores atable in a sequence of rows.

Ø  Column-based storage storesa table in a sequence of columns.

 

下面来看一个例子:

 

从上图可以很清楚地看到,行式存储下一张表的数据都是放在一起的,但列式存储下都被分开保存了。所以它们就有了如下这些优缺点:

                             

行式存储

列式存储

优点

Ø  数据被保存在一起

Ø  INSERT/UPDATE容易

Ø  查询时只有涉及到的列会被读取

Ø  投影(projection)很高效

Ø  任何列都能作为索引

缺点

Ø  选择(Selection)时即使只涉及某几列,所有数据也都会被读取

Ø  选择完成时,被选择的列要重新组装

Ø  INSERT/UPDATE比较麻烦

注:关系型数据库理论回顾 - 选择(Selection)和投影(Projection)



2数据压缩

刚才其实跳过了资料里提到的另一种技术:通过字典表压缩数据。为了方面后面的讲解,这部分也顺带提一下了。

下面中才是那张表本来的样子。经过字典表进行数据压缩后,表中的字符串才都变成数字了。正因为每个字符串在字典表里只出现一次了,所以达到了压缩的目的(有点像规范化和非规范化Normalize和Denomalize)



3查询执行性能

下面就是最牛的图了,通过一条查询的执行过程说明列式存储(以及数据压缩)的优点:



关键步骤如下:

1.     去字典表里找到字符串对应数字(只进行一次字符串比较)。

2.     用数字去列表里匹配,匹配上的位置设为1。

3.     把不同列的匹配结果进行位运算得到符合所有条件的记录下标。

4.     使用这个下标组装出最终的结果集。


bba01b493e1c5d904e882b1c380673c6ebe49a98
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
存储 算法 数据挖掘
【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现
本文介绍了2023年中国高校大数据挑战赛赛题B的Python实现方法,该赛题涉及DNA存储技术中的序列聚类与比对问题,包括错误率分析、序列聚类、拷贝数分布图的绘制以及比对模型的开发。
84 1
【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现
|
1月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
39 4
|
1月前
|
消息中间件 存储 缓存
大数据-71 Kafka 高级特性 物理存储 磁盘存储特性 如零拷贝、页缓存、mmp、sendfile
大数据-71 Kafka 高级特性 物理存储 磁盘存储特性 如零拷贝、页缓存、mmp、sendfile
57 3
|
1月前
|
存储 消息中间件 大数据
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
41 1
|
1月前
|
存储 消息中间件 大数据
大数据-68 Kafka 高级特性 物理存储 日志存储概述
大数据-68 Kafka 高级特性 物理存储 日志存储概述
28 1
|
1月前
|
存储 算法 NoSQL
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
35 0
|
1月前
|
存储 消息中间件 分布式计算
大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引
大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引
36 0
|
1月前
|
存储 SQL 分布式计算
大数据-127 - Flink State 04篇 状态原理和原理剖析:状态存储 Part2
大数据-127 - Flink State 04篇 状态原理和原理剖析:状态存储 Part2
20 0
|
1月前
|
存储 消息中间件 大数据
大数据-126 - Flink State 03篇 状态原理和原理剖析:状态存储 Part1
大数据-126 - Flink State 03篇 状态原理和原理剖析:状态存储 Part1
64 0
|
3月前
|
存储 缓存 NoSQL
深入解析Memcached:内部机制、存储结构及在大数据中的应用
深入解析Memcached:内部机制、存储结构及在大数据中的应用

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 下一篇
    无影云桌面