异步请求池——池式组件

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 异步请求池——池式组件

前言


  本文详细介绍异步请求池的实现过程,并使用DNS服务来测试异步请求池的性能。




  两个必须牢记心中的概念:

  • 同步:检测IO 与 读写IO 在同一个流程里
  • 异步:检测IO 与 读写IO 不在同一个流程

同步请求 与 异步请求 的处理流程

同步请求的处理流程
  我们知道,同步:检测IO 与 读写IO 在同一个流程里,那么就意味着,发送消息之后,需要等待返回结果,在结果没有返回之前都在阻塞等待,图中我们发了3次请求,很明显的看出,这三个请求是串行的。都串行了,怎么搞并发呀!下面来看看异步请求。

同步请求 与 异步请求的 差异

  很明显,同步需要阻塞等待一个请求的完成,异步不需要。同步是一个线程处理所有请求,异步是两个线程。那么如果请1000个请求需要完成呢?必然不可能采用同步阻塞等待的方案,第1000个请求不得等睡着啊。

设计异步请求池

初步构思

  在第三方服务中,连接sockfd都是同步的,也就是说,在同步的流程上,一个连接,可以发多个请求,只不过需要阻塞等待上一条请求返回结果而已。

  而异步呢,异步的其中一个线程的任务必然是一直发送请求,那么必然是非阻塞的,那么我们设计一个请求对应一个fd。“池的概念就出来了”,在send之后,我们将fd加入到epoll中,而epoll_wait在哪呢?在另一个线程中,epoll所在的线程就一直检测epoll中是否有fd可读。

  说的通俗一点,一个请求send之后,将对应的fd加入到epoll里面,另一个线程在一直epoll_wait()读数据。

四元组 init、commit、callback、destroy

//init
struct async_context *dns_async_client_init(void);
//commit
int dns_async_client_commit(struct async_context *ctx, const char *domain, async_result_cb cb);
//pthread callback
static void *dns_async_client_proc(void *arg);
//destroy
int dns_async_client_destroy(struct async_context *ctx);
  • init:初始化函数只做三件事
1.calloc()创建上下文结构体
2.epoll_create()创建一个epoll fd 
3.pthread_create()创建一个新线程。
  • commit:commit函数就是发送请求,它做五件事
1.socket 创建socket 
2.connect连接到第三方服务 
3.encode--->mysql/redis/dns 根据对应的协议将发送的数据封装好 
4.send将数据发送出去 
5.epoll_ctl(ctx->epfd, EPOLL_CTL_ADD, sockfd, &ev);把fd加入到epoll中
  • pthread callback:创建线程时需要给他传递一个回调函数,它做下面伪代码的事情
while(1){
  nready=epoll_wait()
  for(){
    recv();
    parser();//解析协议
    epoll_ctl(epfd, EPOLL_CTL_DEL, sockfd, NULL);
  }
}
  • destroy:init创建了什么就销毁什么
1.close(epfd);
2.pthread_cancel(thid);
3.free(ctx);
  • 应用协议DNS异步请求池实现

1. 初始化请求池init

  • init:初始化函数只做两件事
1.calloc创建上下文结构体
2.epoll_create()创建一个epoll fd 
3.pthread_create()创建一个新线程。
struct async_context {
    int ep_fd;
    pthread_t thread_id;
};
//TODO init
//1.malloc ctx;
//2.epoll_create
//3.pthread_create
struct async_context *dns_async_client_init(void) {
    int epfd = epoll_create(1); //
    if (epfd < 0) return NULL;
    struct async_context *ctx = calloc(1, sizeof(struct async_context));
    if (ctx == NULL) {
        close(epfd);
        return NULL;
    }
    ctx->ep_fd = epfd;
    int ret = pthread_create(&ctx->thread_id, NULL, dns_async_client_proc, ctx);
    if (ret) {
        perror("pthread_create");
        return NULL;
    }
    usleep(1); //child go first
    return ctx;
}

2. 建立连接提交请求commit

  • commit:commit函数就是发送请求,它做五件事
1.socket 创建socket 
2.connect连接到第三方服务 
3.encode--->mysql/redis/dns 根据对应的协议将发送的数据封装好 
4.send将数据发送出去 
5.epoll_ctl(ctx->epfd, EPOLL_CTL_ADD, sockfd, &ev);把fd加入到epoll中

注意这里有一个async_result_cb回调函数,它是负责对fd接收到第三方服务返回的数据之后的回调函数。

//TODO commit
//1.socket
//2.connect
//3.encode ---> redis/mysql/dns
//4.send
//5.epoll_ctl(ctx->ep_fd, EPOLL_CTL_ADD, sockfd, &ev);
int dns_async_client_commit(struct async_context *ctx, const char *domain, async_result_cb cb) {
    //socket
    int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    if (sockfd < 0) {
        perror("create socket failed\n");
        exit(-1);
    }
    printf("url:%s\n", domain);
    set_block(sockfd, 0); //nonblock
    struct sockaddr_in dest;
    bzero(&dest, sizeof(dest));
    dest.sin_family = AF_INET;
    dest.sin_port = htons(53);
    dest.sin_addr.s_addr = inet_addr(DNS_SVR);
  //connect
    connect(sockfd, (struct sockaddr *) &dest, sizeof(dest));
  //encode
    struct dns_header header = {0};
    dns_create_header(&header);
    struct dns_question question = {0};
    dns_create_question(&question, domain);
    char request[1024] = {0};
    int req_len = dns_build_request(&header, &question, request);
    //send
    sendto(sockfd, request, req_len, 0, (struct sockaddr *) &dest, sizeof(struct sockaddr));
    struct ep_arg *eparg = (struct ep_arg *) calloc(1, sizeof(struct ep_arg));
    if (eparg == NULL) return -1;
    eparg->sockfd = sockfd;
    eparg->cb = cb;
    struct epoll_event ev;
    ev.data.ptr = eparg;
    ev.events = EPOLLIN;
    //epoll_ctl
    int ret = epoll_ctl(ctx->ep_fd, EPOLL_CTL_ADD, sockfd, &ev);
    return ret;
}

3. epoll线程的回调函数callback

  • pthread callback:创建线程时需要给他传递一个回调函数,它做下面伪代码的事情
while(1){
  nready=epoll_wait()
  for(){
    recv();
    parser();//解析协议
    epoll_ctl(epfd, EPOLL_CTL_DEL, sockfd, NULL);
  }
}
//TODO pthread callback
/*
 while(1){
    epoll_wait();
    recv;
    parser();
    data callback();
    epoll_ctl(ep_fd, EPOLL_CTL_DEL, sockfd, NULL);
    free(date);
 }
 */
static void *dns_async_client_proc(void *arg) {
    struct async_context *ctx = (struct async_context *) arg;
    int epfd = ctx->ep_fd;
    while (1) {
        struct epoll_event events[ASYNC_CLIENT_NUM] = {0};
        int nready = epoll_wait(epfd, events, ASYNC_CLIENT_NUM, -1);
        if (nready <= 0) {
            continue;
        }
        printf("nready:%d\n", nready);
        int i = 0;
        for (i = 0; i < nready; i++) {
            struct ep_arg *data = (struct ep_arg *) events[i].data.ptr;
            int sockfd = data->sockfd;
            char buffer[1024] = {0};
            struct sockaddr_in addr;
            size_t addr_len = sizeof(struct sockaddr_in);
            //recv
            recvfrom(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr *) &addr, (socklen_t *) &addr_len);
      //parse
            struct dns_item *domain_list = NULL;
            int count = dns_parse_response(buffer, &domain_list);
            //call cb
            data->cb(domain_list, count);
            //del
            epoll_ctl(epfd, EPOLL_CTL_DEL, sockfd, NULL);
            close(sockfd);
            //free
            dns_async_client_free_domains(domain_list, count);
            free(data);
        }
    }
}

4. 销毁请求池destroy

  • destroy:init创建了什么就销毁什么
1.close(epfd);
2.pthread_cancel(thid);
3.free(ctx);
//TODO destroy
//1.close(ep_fd)
//2.pthread_cancel(ctx->thread_id);
//3.free(ctx);
int dns_async_client_destroy(struct async_context *ctx) {
    close(ctx->ep_fd);
    pthread_cancel(ctx->thread_id);
    free(ctx);
    return 0;
}

Demo完整代码

DNS同步请求代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/epoll.h>
#include <arpa/inet.h>
#include <pthread.h>
#define DNS_SVR                "114.114.114.114"
#define DNS_HOST            0x01
#define DNS_CNAME            0x05
// DNS报文头部
struct dns_header {
    unsigned short id;
    unsigned short flags;
    unsigned short qdcount;
    unsigned short ancount;
    unsigned short nscount;
    unsigned short arcount;
};
// DNS报文正文
struct dns_question {
    int length;
    unsigned short qtype;
    unsigned short qclass;
    char *qname;
};
// DNS服务器返回的ip信息
struct dns_item {
    char *domain;
    char *ip;
};
// header填充与函数实现
int dns_create_header(struct dns_header *header) {
    if (header == NULL) return -1;
    memset(header, 0, sizeof(struct dns_header));
    srandom(time(NULL));
    header->id = random();
    header->flags |= htons(0x0100);
    header->qdcount = htons(1);
    return 0;
}
// question填充与函数实现
int dns_create_question(struct dns_question *question, const char *hostname) {
    if (question == NULL) return -1;
    memset(question, 0, sizeof(struct dns_question));
    question->qname = (char *) malloc(strlen(hostname) + 2);
    if (question->qname == NULL) return -2;
    question->length = strlen(hostname) + 2;
    question->qtype = htons(1);
    question->qclass = htons(1);
    const char delim[2] = ".";
    char *hostname_dup = strdup(hostname);
    char *token = strtok(hostname_dup, delim);
    char *qname_p = question->qname;
    while (token != NULL) {
        size_t len = strlen(token);
        *qname_p = len;
        qname_p++;
        strncpy(qname_p, token, len + 1);
        qname_p += len;
        token = strtok(NULL, delim);
    }
    free(hostname_dup);
    return 0;
}
// 对头部和问题区做一个打包
int dns_build_request(struct dns_header *header, struct dns_question *question, char *request) {
    int header_s = sizeof(struct dns_header);
    int question_s = question->length + sizeof(question->qtype) + sizeof(question->qclass);
    int length = question_s + header_s;
    int offset = 0;
    memcpy(request + offset, header, sizeof(struct dns_header));
    offset += sizeof(struct dns_header);
    memcpy(request + offset, question->qname, question->length);
    offset += question->length;
    memcpy(request + offset, &question->qtype, sizeof(question->qtype));
    offset += sizeof(question->qtype);
    memcpy(request + offset, &question->qclass, sizeof(question->qclass));
    return length;
}
// 解析服务器发过来的数据
static int is_pointer(int in) {
    return ((in & 0xC0) == 0xC0);
}
static void dns_parse_name(unsigned char *chunk, unsigned char *ptr, char *out, int *len) {
    int flag = 0, n = 0, alen = 0;
    char *pos = out + (*len);
    while (1) {
        flag = (int) ptr[0];
        if (flag == 0) break;
        if (is_pointer(flag)) {
            n = (int) ptr[1];
            ptr = chunk + n;
            dns_parse_name(chunk, ptr, out, len);
            break;
        }
        else {
            ptr++;
            memcpy(pos, ptr, flag);
            pos += flag;
            ptr += flag;
            *len += flag;
            if ((int) ptr[0] != 0) {
                memcpy(pos, ".", 1);
                pos += 1;
                (*len) += 1;
            }
        }
    }
}
//解析响应信息  buffer为response返回的信息
static int dns_parse_response(char *buffer, struct dns_item **domains) {
    int i = 0;
    unsigned char *ptr = buffer;
    ptr += 4;
    int querys = ntohs(*(unsigned short *) ptr);
    ptr += 2;
    int answers = ntohs(*(unsigned short *) ptr);
    ptr += 6;
    for (i = 0; i < querys; i++) {
        while (1) {
            int flag = (int) ptr[0];
            ptr += (flag + 1);
            if (flag == 0) break;
        }
        ptr += 4;
    }
    char cname[128], aname[128], ip[20], netip[4];
    int len, type, ttl, datalen;
    int cnt = 0;
    struct dns_item *list = (struct dns_item *) calloc(answers, sizeof(struct dns_item));
    if (list == NULL) {
        return -1;
    }
    for (i = 0; i < answers; i++) {
        bzero(aname, sizeof(aname));
        len = 0;
        dns_parse_name(buffer, ptr, aname, &len);
        ptr += 2;
        type = htons(*(unsigned short *) ptr);
        ptr += 4;
        ttl = htons(*(unsigned short *) ptr);
        ptr += 4;
        datalen = ntohs(*(unsigned short *) ptr);
        ptr += 2;
        if (type == DNS_CNAME) {
            bzero(cname, sizeof(cname));
            len = 0;
            dns_parse_name(buffer, ptr, cname, &len);
            ptr += datalen;
        }
        else if (type == DNS_HOST) {
            bzero(ip, sizeof(ip));
            if (datalen == 4) {
                memcpy(netip, ptr, datalen);
                inet_ntop(AF_INET, netip, ip, sizeof(struct sockaddr));
                printf("%s has address %s\n", aname, ip);
                printf("\tTime to live: %d minutes , %d seconds\n", ttl / 60, ttl % 60);
                list[cnt].domain = (char *) calloc(strlen(aname) + 1, 1);
                memcpy(list[cnt].domain, aname, strlen(aname));
                list[cnt].ip = (char *) calloc(strlen(ip) + 1, 1);
                memcpy(list[cnt].ip, ip, strlen(ip));
                cnt++;
            }
            ptr += datalen;
        }
    }
    *domains = list;
    ptr += 2;
    return cnt;
}
int dns_client_commit(const char *domain) {
    int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    if (sockfd < 0) {
        perror("create socket failed\n");
        exit(-1);
    }
    printf("url:%s\n", domain);
    struct sockaddr_in dest;
    bzero(&dest, sizeof(dest));
    dest.sin_family = AF_INET;
    dest.sin_port = htons(53);
    dest.sin_addr.s_addr = inet_addr(DNS_SVR);
    int ret = connect(sockfd, (struct sockaddr *) &dest, sizeof(dest));
    printf("connect :%d\n", ret);
    struct dns_header header = {0};
    dns_create_header(&header);
    struct dns_question question = {0};
    dns_create_question(&question, domain);
    char request[1024] = {0};
    int req_len = dns_build_request(&header, &question, request);
    int slen = sendto(sockfd, request, req_len, 0, (struct sockaddr *) &dest, sizeof(struct sockaddr));
    char buffer[1024] = {0};
    struct sockaddr_in addr;
    size_t addr_len = sizeof(struct sockaddr_in);
    int n = recvfrom(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr *) &addr, (socklen_t *) &addr_len);
    printf("recvfrom n : %d\n", n);
    struct dns_item *domains = NULL;
    dns_parse_response(buffer, &domains);
    return 0;
}
char *domain[] = {
//  "www.ntytcp.com",
        "bojing.wang",
        "www.baidu.com",
        "tieba.baidu.com",
        "news.baidu.com",
        "zhidao.baidu.com",
        "music.baidu.com",
        "image.baidu.com",
        "v.baidu.com",
        "map.baidu.com",
        "baijiahao.baidu.com",
        "xueshu.baidu.com",
        "cloud.baidu.com",
        "www.163.com",
        "open.163.com",
        "auto.163.com",
        "gov.163.com",
        "money.163.com",
        "sports.163.com",
        "tech.163.com",
        "edu.163.com",
        "www.taobao.com",
        "q.taobao.com",
        "sf.taobao.com",
        "yun.taobao.com",
        "baoxian.taobao.com",
        "www.tmall.com",
        "suning.tmall.com",
        "www.tencent.com",
        "www.qq.com",
        "www.aliyun.com",
        "www.ctrip.com",
        "hotels.ctrip.com",
        "hotels.ctrip.com",
        "vacations.ctrip.com",
        "flights.ctrip.com",
        "trains.ctrip.com",
        "bus.ctrip.com",
        "car.ctrip.com",
        "piao.ctrip.com",
        "tuan.ctrip.com",
        "you.ctrip.com",
        "g.ctrip.com",
        "lipin.ctrip.com",
        "ct.ctrip.com"
};
int main(int argc, char *argv[]) {
    int begin, end;
    begin = clock();    //计时开始
    int i;
    for (i = 0; i < sizeof(domain) / sizeof(domain[0]); i++) {
        dns_client_commit(domain[i]);
    }
    end = clock();    //计时结束
    getchar();
    printf("\n\nRunning Time:%lfs\n", (double)(end-begin)/CLOCKS_PER_SEC);
}

DNS异步请求代码

DNS同步与异步的性能测试对比

  这里就测试了44条域名,可以看到差距还是非常明显的。

如果想用同步的编程方式去实现异步的性能,那么就需要用到协程的思想来进行改变这个异步请求池

也就是我们异步请求池里的操作是,一个线程处理结果,另一个线程检测IO事件是否就绪,

那么用协程的思想去操作的时候,那么就知道了,我们同步和异步的区别就是,发送请求

等待结果,并处理结果,这里会等待,等待的原因是因为IO事件没有就绪,那么就可以用

跳转,如果事件没有就绪,直接跳转,重新发送,并检测IO事件,往返多次,就达到了我

们的异步的性能,主要是优化了等待资源就绪的时间!!!!

相关文章
|
6月前
|
网络协议 NoSQL 关系型数据库
池式组件-异步请求池的原理与实现
池式组件-异步请求池的原理与实现
40 0
|
网络协议 NoSQL 关系型数据库
异步请求池
异步请求池
122 0
|
23天前
|
缓存 UED
动态组件与 keep-alive 搭配使用时的生命周期钩子
【10月更文挑战第19天】动态组件与 keep-alive 搭配使用时的生命周期钩子为我们提供了更多的灵活性和可操作性,使我们能够更好地管理组件的状态和行为。深入理解和掌握这些钩子的特点和用法,以便在实际开发中能够更加得心应手地运用它们,为我们的应用带来更优秀的用户体验和性能表现。
110 62
|
16天前
|
存储 JavaScript 中间件
在 Redux 动态路由中进行数据预加载时,如何处理数据加载失败的情况?
【10月更文挑战第22天】在 Redux 动态路由中进行数据预加载时,数据加载失败是需要妥善处理的情况
29 4
|
16天前
|
JavaScript 中间件 网络架构
在 Redux 动态路由中进行数据预加载
【10月更文挑战第22天】可以在 Redux 动态路由中有效地进行数据预加载,提高应用的性能和用户体验。在实际项目中,可以根据具体的需求和场景选择合适的方法或组合使用多种方法来实现更优化的数据预加载策略。
24 3
|
4月前
|
JavaScript API
前后端数据交互.js文件的axios的写法,想要往后端发送数据,页面注入API,await的意思是同步等待服务器数据,并返回,axios注入在其他页面,其他页面调用的时候,同步作用
前后端数据交互.js文件的axios的写法,想要往后端发送数据,页面注入API,await的意思是同步等待服务器数据,并返回,axios注入在其他页面,其他页面调用的时候,同步作用
|
6月前
|
缓存 JavaScript
在 Vue 组件中使用计算属性和侦听器来响应路由变化
【5月更文挑战第8天】Vue Router 中,计算属性和侦听器常用于根据路由变化更新组件状态。计算属性缓存依赖,当路由参数改变时自动更新,如示例中的 `userId`。侦听器则监听 `$route` 变化,执行相应操作,例如在 `currentUserId` 示例中响应 `userId` 更新。计算属性适合简单变化,而异步操作或复杂场景可选用侦听器。Vue 3 中,`watchEffect` 减少了部分侦听场景的复杂性。总之,它们用于组件内部响应路由变化,而非直接处理路由逻辑。
46 4
|
6月前
|
网络协议 NoSQL 测试技术
异步请求池的实现
异步请求池的实现
56 0
|
6月前
|
域名解析 网络协议
异步请求池原理及实现
异步请求池原理及实现
|
11月前
|
缓存 JavaScript
Vue 路由缓存 防止路由切换数据丢失 路由的生命周期
Vue 路由缓存 防止路由切换数据丢失 路由的生命周期