服务器百万并发的原理与实现

简介: 服务器百万并发的原理与实现

什么是百万并发?

指的是服务器接收百万个连接或数据会在同一时刻接收到,也就是同时能看到

百万个连接或数据。

在了解服务器百万并发的同时,我们先来看看我们的百万并发服务器的结构图。

主体是以reactor为核心,链表方式存储事件以及事件对应的属性

服务端

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/time.h>               
#include <sys/sendfile.h>
#define BUFFER_LENGTH   1024
#define MAX_EPOLL_EVENTS  1024
#define RESOURCE_LENGTH 1024
#define SERVER_PORT     8888
#define PORT_COUNT      1
typedef int NCALLBACK(int ,int, void*);
#define HTTP_METHOD_GET   0
#define HTTP_METHOD_POST  1
struct ntyevent {
  int fd;
  int events;
  void *arg;
  int (*callback)(int fd, int events, void *arg);
  int status;
  char buffer[BUFFER_LENGTH];
  char wbuffer[BUFFER_LENGTH];
  int length;
  int wlength;
  //long last_active;
  // http reqeust
  int method;
  char resource[RESOURCE_LENGTH];
};
struct eventblock {
  struct eventblock *next;
  struct ntyevent *events;
};
struct ntyreactor {
  int epfd;
  int blkcnt;
  struct eventblock *evblks;
};
int recv_cb(int fd, int events, void *arg);
int send_cb(int fd, int events, void *arg);
struct ntyevent *ntyreactor_idx(struct ntyreactor *reactor, int sockfd);
void nty_event_set(struct ntyevent *ev, int fd, NCALLBACK callback, void *arg) {
  ev->fd = fd;
  ev->callback = callback;
  ev->events = 0;
  ev->arg = arg;
  //ev->last_active = time(NULL);
  return ;
}
int nty_event_add(int epfd, int events, struct ntyevent *ev) {
  struct epoll_event ep_ev = {0, {0}};
  ep_ev.data.ptr = ev;
  ep_ev.events = ev->events = events;
  int op;
  if (ev->status == 1) {
    op = EPOLL_CTL_MOD;
  } else {
    op = EPOLL_CTL_ADD;
    ev->status = 1;
  }
  if (epoll_ctl(epfd, op, ev->fd, &ep_ev) < 0) {
    printf("event add failed [fd=%d], events[%d]\n", ev->fd, events);
    return -1;
  }
  return 0;
}
int nty_event_del(int epfd, struct ntyevent *ev) 
{
  struct epoll_event ep_ev = {0, {0}};
  if (ev->status != 1) {
    return -1;
  }
  ep_ev.data.ptr = ev;
  ev->status = 0;
  epoll_ctl(epfd, EPOLL_CTL_DEL, ev->fd, &ep_ev);
  return 0;
}
// request
// location  /0voice/king/index.html HTTP/1.1
// 
int readline(char* allbuf,int idx,char* linebuf) {    
  int len = strlen(allbuf);    
  for (;idx < len; ++idx)    {        
    if(allbuf[idx]=='\r' && allbuf[idx+1]=='\n')            
      return idx+2;        
    else            
      *(linebuf++) = allbuf[idx];    
  }    
  return -1;
}
int nty_http_request(struct ntyevent *ev) {
  char linebuffer[1024] = {0};
  int idx = readline(ev->buffer, 0, linebuffer);
  if (strstr(linebuffer, "GET")) {
    ev->method = HTTP_METHOD_GET; //
    int i = 0;
    while(linebuffer[sizeof("GET ") + i] != ' ') i ++;
    linebuffer[sizeof("GET ") + i] = '\0';
    sprintf(ev->resource, "%s/%s", HTTP_WEB_ROOT, linebuffer+sizeof("GET "));
    //printf("resource: %s\n", ev->resource);    //
  } else if (strstr(linebuffer, "POST")) {
    ev->method = HTTP_METHOD_POST;
  }
}
int nty_http_response_get_method(struct ntyevent *ev) {
  //int filed = open()
#if 0
  int len = sprintf(ev->wbuffer, 
  "HTTP/1.1 200 OK\r\n"
"Accept-Ranges: bytes\r\n"
"Content-Length: 78\r\n"
"Content-Type: text/html\r\n"
"Date: Sat, 06 Aug 2022 13:16:46 GMT\r\n\r\n"
"<html><head><title>0voice.king</title></head><body><h1>King</h1><body/></html>");
  ev->wlength = len;
#else
  int len;
  int filefd = open(ev->resource, O_RDONLY);
  if (filefd == -1) {
    len = sprintf(ev->wbuffer, 
  "HTTP/1.1 200 OK\r\n"
"Accept-Ranges: bytes\r\n"
"Content-Length: 78\r\n"
"Content-Type: text/html\r\n"
"Date: Sat, 06 Aug 2022 13:16:46 GMT\r\n\r\n"
"<html><head><title>0voice.king</title></head><body><h1>King</h1><body/></html>");
    ev->wlength = len;
  } else {
    struct stat stat_buf;
    fstat(filefd, &stat_buf);
    close(filefd);
#if 1
    len = sprintf(ev->wbuffer, 
  "HTTP/1.1 200 OK\r\n"
"Accept-Ranges: bytes\r\n"
"Content-Length: %ld\r\n"
"Content-Type: text/html\r\n"
"Date: Sat, 06 Aug 2022 13:16:46 GMT\r\n\r\n", stat_buf.st_size);
#else
len = sprintf(ev->wbuffer, 
  "HTTP/1.1 200 OK\r\n"
"Accept-Ranges: bytes\r\n"
"Content-Length: %ld\r\n"
"Content-Type: image/png\r\n"
"Date: Sat, 06 Aug 2022 13:16:46 GMT\r\n\r\n", stat_buf.st_size);
#endif
    ev->wlength = len;
  }
#endif
  return len;
}
int nty_http_response(struct ntyevent *ev) {
  // ev->method, ev->resouces
  if (ev->method == HTTP_METHOD_GET) {
    return nty_http_response_get_method(ev);
  } else if (ev->method == HTTP_METHOD_POST) {
  }
}
// connection
// sock_item --> fd, rbuffer, wbuffer, clientaddr
int recv_cb(int fd, int events, void *arg) {
  struct ntyreactor *reactor = (struct ntyreactor*)arg;
  struct ntyevent *ev = ntyreactor_idx(reactor, fd);
  if (ev == NULL) return -1;
  //
  int len = recv(fd, ev->buffer, BUFFER_LENGTH, 0);
  nty_event_del(reactor->epfd, ev);
  if (len > 0) {
    ev->length = len;
    ev->buffer[len] = '\0';
    //printf("recv [%d]:%s\n", fd, ev->buffer);
    nty_http_request(ev); // parser http hdr
    nty_event_set(ev, fd, send_cb, reactor);
    nty_event_add(reactor->epfd, EPOLLOUT, ev);
  } else if (len == 0) {
    nty_event_del(reactor->epfd, ev);
    //printf("recv_cb --> disconnect\n");
    close(ev->fd);
  } else {
    if (errno == EAGAIN && errno == EWOULDBLOCK) { //
    } else if (errno == ECONNRESET){
      nty_event_del(reactor->epfd, ev);
      close(ev->fd);
    }
    //printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
  }
  return len;
}
int send_cb(int fd, int events, void *arg) {
  struct ntyreactor *reactor = (struct ntyreactor*)arg;
  struct ntyevent *ev = ntyreactor_idx(reactor, fd);
  if (ev == NULL) return -1;
  nty_http_response(ev); //encode
  int len = send(fd, ev->wbuffer, ev->wlength, 0);
  if (len > 0) {
    //printf("resource: %s\n", ev->resource);
    int filefd = open(ev->resource, O_RDONLY);
    //if (filefd < 0) return -1;
    struct stat stat_buf;
    fstat(filefd, &stat_buf);
    int flag = fcntl(fd, F_GETFL, 0);
    flag &= ~O_NONBLOCK;
    fcntl(fd, F_SETFL, flag);
    int ret = sendfile(fd, filefd, NULL, stat_buf.st_size);
    if (ret == -1) {
      printf("sendfile: errno: %d\n", errno);
    }
    flag |= O_NONBLOCK;
    fcntl(fd, F_SETFL, flag);
    close(filefd);
    send(fd, "\r\n", 2, 0);
    nty_event_del(reactor->epfd, ev);
    nty_event_set(ev, fd, recv_cb, reactor);
    nty_event_add(reactor->epfd, EPOLLIN, ev);
  } else {
    nty_event_del(reactor->epfd, ev);
    close(ev->fd);
    //printf("send[fd=%d] error %s\n", fd, strerror(errno));
  }
  return len;
}
int curfds = 0;
#define TIME_SUB_MS(tv1, tv2)  ((tv1.tv_sec - tv2.tv_sec) * 1000 + (tv1.tv_usec - tv2.tv_usec) / 1000)
struct timeval tv_begin;
int accept_cb(int fd, int events, void *arg) {
  struct ntyreactor *reactor = (struct ntyreactor*)arg;
  if (reactor == NULL) return -1;
  struct sockaddr_in client_addr;
  socklen_t len = sizeof(client_addr);
  int clientfd;
  if ((clientfd = accept(fd, (struct sockaddr*)&client_addr, &len)) == -1) {
    if (errno != EAGAIN && errno != EINTR) {
    }
    printf("accept: %s\n", strerror(errno));
    return -1;
  }
  int flag = 0;
  if ((flag = fcntl(clientfd, F_SETFL, O_NONBLOCK)) < 0) {
    printf("%s: fcntl nonblocking failed, %d\n", __func__, MAX_EPOLL_EVENTS);
    return -1;
  }
  struct ntyevent *event = ntyreactor_idx(reactor, clientfd);
  if (event == NULL) return -1;
  nty_event_set(event, clientfd, recv_cb, reactor);
  nty_event_add(reactor->epfd, EPOLLIN, event);
  if (curfds++ % 1000 == 999) {
    struct timeval tv_cur;
    memcpy(&tv_cur, &tv_begin, sizeof(struct timeval));
    gettimeofday(&tv_begin, NULL);
    int time_used = TIME_SUB_MS(tv_begin, tv_cur);
    printf("connections: %d, sockfd:%d, time_used:%d\n", curfds, clientfd, time_used);
  }
  //printf("new connect [%s:%d], pos[%d]\n", 
  //  inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port), clientfd);
  return 0;
}
int init_sock(short port) {
  int fd = socket(AF_INET, SOCK_STREAM, 0);
  fcntl(fd, F_SETFL, O_NONBLOCK);
  struct sockaddr_in server_addr;
  memset(&server_addr, 0, sizeof(server_addr));
  server_addr.sin_family = AF_INET;
  server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
  server_addr.sin_port = htons(port);
          if (bind(fd, (struct sockaddr*)&addr, sizeof(struct sockaddr_in)) < 0) {
              perror("bind");
              return 2;
          }
  if (listen(fd, 20) < 0) {
    printf("listen failed : %s\n", strerror(errno));
    return -1;
  }
  printf("listen server port : %d\n", port);
  gettimeofday(&tv_begin, NULL);
  return fd;
}
int ntyreactor_alloc(struct ntyreactor *reactor) {
  if (reactor == NULL) return -1;
  if (reactor->evblks == NULL) return -1;
  struct eventblock *blk = reactor->evblks;
  while (blk->next != NULL) {
    blk = blk->next;
  }
  struct ntyevent* evs = (struct ntyevent*)malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
  if (evs == NULL) {
    printf("ntyreactor_alloc ntyevent failed\n");
    return -2;
  }
  memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
  struct eventblock *block = malloc(sizeof(struct eventblock));
  if (block == NULL) {
    printf("ntyreactor_alloc eventblock failed\n");
    return -3;
  }
  block->events = evs;
  block->next = NULL;
  blk->next = block;
  reactor->blkcnt ++;
  return 0;
}
struct ntyevent *ntyreactor_idx(struct ntyreactor *reactor, int sockfd) {
  if (reactor == NULL) return NULL;
  if (reactor->evblks == NULL) return NULL;
  int blkidx = sockfd / MAX_EPOLL_EVENTS;
  while (blkidx >= reactor->blkcnt) {
    ntyreactor_alloc(reactor);
  }
  int i = 0;
  struct eventblock *blk = reactor->evblks;
  while (i++ != blkidx && blk != NULL) {
    blk = blk->next;
  }
  return &blk->events[sockfd % MAX_EPOLL_EVENTS];
}
int ntyreactor_init(struct ntyreactor *reactor) {
  if (reactor == NULL) return -1;
  memset(reactor, 0, sizeof(struct ntyreactor));
  reactor->epfd = epoll_create(1);
  if (reactor->epfd <= 0) {
    printf("create epfd in %s err %s\n", __func__, strerror(errno));
    return -2;
  }
  struct ntyevent* evs = (struct ntyevent*)malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
  if (evs == NULL) {
    printf("create epfd in %s err %s\n", __func__, strerror(errno));
    close(reactor->epfd);
    return -3;
  }
  memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
  struct eventblock *block = malloc(sizeof(struct eventblock));
  if (block == NULL) {
    free(evs);
    close(reactor->epfd);
    return -3;
  }
  block->events = evs;
  block->next = NULL;
  reactor->evblks = block;
  reactor->blkcnt = 1;
  return 0;
}
int ntyreactor_destory(struct ntyreactor *reactor) {
  close(reactor->epfd);
  struct eventblock *blk = reactor->evblks;
  struct eventblock *blk_next;
  while (blk != NULL) {
    blk_next = blk->next;
    free(blk->events);
    free(blk);
    blk = blk_next;
  }
  return 0;
}
int ntyreactor_addlistener(struct ntyreactor *reactor, int sockfd, NCALLBACK *acceptor) {
  if (reactor == NULL) return -1;
  if (reactor->evblks == NULL) return -1;
  struct ntyevent *event = ntyreactor_idx(reactor, sockfd);
  if (event == NULL) return -1;
  nty_event_set(event, sockfd, acceptor, reactor);
  nty_event_add(reactor->epfd, EPOLLIN, event);
  return 0;
}
int ntyreactor_run(struct ntyreactor *reactor) {
  if (reactor == NULL) return -1;
  if (reactor->epfd < 0) return -1;
  if (reactor->evblks == NULL) return -1;
  struct epoll_event events[MAX_EPOLL_EVENTS+1];
  int checkpos = 0, i;
  while (1) {
    int nready = epoll_wait(reactor->epfd, events, MAX_EPOLL_EVENTS, 1000);
    if (nready < 0) {
      printf("epoll_wait error, exit\n");
      continue;
    }
    for (i = 0;i < nready;i ++) {
      struct ntyevent *ev = (struct ntyevent*)events[i].data.ptr;
      if ((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)) {
        ev->callback(ev->fd, events[i].events, ev->arg);
      }
      if ((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)) {
        ev->callback(ev->fd, events[i].events, ev->arg);
      }
    }
  }
}
int main(int argc, char *argv[]) {
  struct ntyreactor *reactor = (struct ntyreactor*)malloc(sizeof(struct ntyreactor));
  ntyreactor_init(reactor);
  unsigned short port = SERVER_PORT;
  if (argc == 2) {
    port = atoi(argv[1]);
  }
  int i = 0;
  int sockfds[PORT_COUNT] = {0};
  for (i = 0;i < PORT_COUNT;i ++) {
    sockfds[i] = init_sock(port+i);
    ntyreactor_addlistener(reactor, sockfds[i], accept_cb);
  }
  ntyreactor_run(reactor);
  ntyreactor_destory(reactor);
  for (i = 0;i < PORT_COUNT;i ++) {
    close(sockfds[i]);
  }
  free(reactor);
  return 0;
}

客户端(向服务器一直发请求)

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <errno.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <fcntl.h>
#define MAX_BUFFER    128
#define MAX_EPOLLSIZE (384*1024)
#define MAX_PORT    100
#define TIME_SUB_MS(tv1, tv2)  ((tv1.tv_sec - tv2.tv_sec) * 1000 + (tv1.tv_usec - tv2.tv_usec) / 1000)
int isContinue = 0;
static int ntySetNonblock(int fd) {
  int flags;
  flags = fcntl(fd, F_GETFL, 0);
  if (flags < 0) return flags;
  flags |= O_NONBLOCK;
  if (fcntl(fd, F_SETFL, flags) < 0) return -1;
  return 0;
}
static int ntySetReUseAddr(int fd) {
  int reuse = 1;
  return setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&reuse, sizeof(reuse));
}
int main(int argc, char **argv) {
  if (argc <= 2) {
    printf("Usage: %s ip port\n", argv[0]);
    exit(0);
  }
  const char *ip = argv[1];
  int port = atoi(argv[2]);
  int connections = 0;
  char buffer[128] = {0};
  int i = 0, index = 0;
  struct epoll_event events[MAX_EPOLLSIZE];
  int epoll_fd = epoll_create(MAX_EPOLLSIZE);
  strcpy(buffer, " Data From MulClient\n");
  struct sockaddr_in addr;
  memset(&addr, 0, sizeof(struct sockaddr_in));
  addr.sin_family = AF_INET;
  addr.sin_addr.s_addr = inet_addr(ip);
  struct timeval tv_begin;
  gettimeofday(&tv_begin, NULL);
  while (1) {
    if (++index >= MAX_PORT) index = 0;
    struct epoll_event ev;
    int sockfd = 0;
    if (connections < 340000 && !isContinue) {
      sockfd = socket(AF_INET, SOCK_STREAM, 0);
      if (sockfd == -1) {
        perror("socket");
        goto err;
      }
      //ntySetReUseAddr(sockfd);
      addr.sin_port = htons(port+index);
      if (connect(sockfd, (struct sockaddr*)&addr, sizeof(struct sockaddr_in)) < 0) {
        perror("connect");
        goto err;
      }
      ntySetNonblock(sockfd);
      ntySetReUseAddr(sockfd);
      sprintf(buffer, "Hello Server: client --> %d\n", connections);
      send(sockfd, buffer, strlen(buffer), 0);
      ev.data.fd = sockfd;
      ev.events = EPOLLIN | EPOLLOUT;
      epoll_ctl(epoll_fd, EPOLL_CTL_ADD, sockfd, &ev);
      connections ++;
    }
    //connections ++;
    if (connections % 1000 == 999 || connections >= 340000) {
      struct timeval tv_cur;
      memcpy(&tv_cur, &tv_begin, sizeof(struct timeval));
      gettimeofday(&tv_begin, NULL);
      int time_used = TIME_SUB_MS(tv_begin, tv_cur);
      printf("connections: %d, sockfd:%d, time_used:%d\n", connections, sockfd, time_used);
      int nfds = epoll_wait(epoll_fd, events, connections, 100);
      for (i = 0;i < nfds;i ++) {
        int clientfd = events[i].data.fd;
        if (events[i].events & EPOLLOUT) {
          sprintf(buffer, "data from %d\n", clientfd);
          send(sockfd, buffer, strlen(buffer), 0);
        } else if (events[i].events & EPOLLIN) {
          char rBuffer[MAX_BUFFER] = {0};       
          ssize_t length = recv(sockfd, rBuffer, MAX_BUFFER, 0);
          if (length > 0) {
            printf(" RecvBuffer:%s\n", rBuffer);
            if (!strcmp(rBuffer, "quit")) {
              isContinue = 0;
            }
          } else if (length == 0) {
            printf(" Disconnect clientfd:%d\n", clientfd);
            connections --;
            close(clientfd);
          } else {
            if (errno == EINTR) continue;
            printf(" Error clientfd:%d, errno:%d\n", clientfd, errno);
            close(clientfd);
          }
        } else {
          printf(" clientfd:%d, errno:%d\n", clientfd, errno);
          close(clientfd);
        }
      }
    }
    usleep(500);
  }
  return 0;
err:
  printf("error : %s\n", strerror(errno));
  return 0;
}

实现效果跟服务器的性能和台数也有关系,我只有一台服务器并且内存很小只有1G,所以到不了百万并发,多几台服务器就可以实现百万并发了

还有一个细节就是在测试百万并发的时候,尽量减少IO操作提升百万并发效率

相关文章
|
6月前
|
存储 弹性计算 对象存储
ECS快照原理
ECS快照原理
112 1
|
3月前
|
开发框架 缓存 .NET
并发请求太多,服务器崩溃了?试试使用 ASP.NET Core Web API 操作筛选器对请求进行限流
并发请求太多,服务器崩溃了?试试使用 ASP.NET Core Web API 操作筛选器对请求进行限流
198 0
|
6月前
|
弹性计算
阿里云3M带宽云服务器并发多大?阿里云3M带宽云服务器测评参考
在探讨云服务器3M带宽能支持多大并发这一问题时,我们首先要明白一个关键点:并发量并非仅由带宽决定,还与网站本身的大小密切相关。一般来说,一个优化良好的普通网站页面大小可能只有几K,为便于计算,我们可以暂且假定每个页面大小为50K。
1229 1
|
1月前
|
分布式计算 监控 Hadoop
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
37 1
|
6月前
|
算法 Java
并发垃圾回收算法对于大规模服务器应用的优势
并发垃圾回收算法对于大规模服务器应用的优势
|
5月前
|
Java
Java Socket编程与多线程:提升客户端-服务器通信的并发性能
【6月更文挑战第21天】Java网络编程中,Socket结合多线程提升并发性能,服务器对每个客户端连接启动新线程处理,如示例所示,实现每个客户端的独立操作。多线程利用多核处理器能力,避免串行等待,提升响应速度。防止死锁需减少共享资源,统一锁定顺序,使用超时和重试策略。使用synchronized、ReentrantLock等维持数据一致性。多线程带来性能提升的同时,也伴随复杂性和挑战。
98 0
|
1月前
|
存储 网络协议 Unix
docker的底层原理一:客户端-服务器架构
本文详细解释了Docker的客户端-服务器架构,包括常驻后台的Docker守护进程、通过命令行接口发送请求的Docker客户端、以及它们之间通过Unix socket或网络接口进行的通信。
19 0
|
3月前
|
域名解析 存储 缓存
域名服务器 (DNS):工作原理及其优势
【8月更文挑战第19天】
358 0
|
4月前
|
缓存 弹性计算 数据库
阿里云2核4G服务器支持多少人在线?程序效率、并发数、内存CPU性能、公网带宽多因素
2核4G云服务器支持的在线人数取决于多种因素:应用效率、并发数、内存、CPU、带宽、数据库性能、缓存策略、CDN和OSS使用,以及用户行为和系统优化。阿里云的ECS u1实例2核4G配置,适合轻量级应用,实际并发量需结合具体业务测试。
75 0
阿里云2核4G服务器支持多少人在线?程序效率、并发数、内存CPU性能、公网带宽多因素
|
5月前
|
Java 数据安全/隐私保护
深入剖析:Java Socket编程原理及客户端-服务器通信机制
【6月更文挑战第21天】Java Socket编程用于构建网络通信,如在线聊天室。服务器通过`ServerSocket`监听,接收客户端`Socket`连接请求。客户端使用`Socket`连接服务器,双方通过`PrintWriter`和`BufferedReader`交换数据。案例展示了服务器如何处理每个新连接并广播消息,以及客户端如何发送和接收消息。此基础为理解更复杂的网络应用奠定了基础。
66 13
下一篇
无影云桌面