79 网站点击流数据分析案例(整体技术流程及架构)

简介: 79 网站点击流数据分析案例(整体技术流程及架构)
1.数据处理流程

该项目是一个纯粹的数据分析项目,其整体流程基本上就是依据数据的处理流程进行,依此有以下几个大的步骤:

1)数据采集

首先,通过页面嵌入JS代码的方式获取用户访问行为,并发送到web服务的后台记录日志

然后,将各服务器上生成的点击流日志通过实时或批量的方式汇聚到HDFS文件系统中

当然,一个综合分析系统,数据源可能不仅包含点击流数据,还有数据库中的业务数据(如用户信息、商品信息、订单信息等)及对分析有益的外部数据。

2)数据预处理

通过mapreduce程序对采集到的点击流数据进行预处理,比如清洗,格式整理,滤除脏数据等

3)数据入库

将预处理之后的数据导入到HIVE仓库中相应的库和表中

4)数据分析

项目的核心内容,即根据需求开发ETL分析语句,得出各种统计结果

5)数据展现

将分析所得数据进行可视化

2.项目结构

由于本项目是一个纯粹数据分析项目,其整体结构亦跟分析流程匹配,并没有特别复杂的结构,如下图:

其中,需要强调的是:

系统的数据分析不是一次性的,而是按照一定的时间频率反复计算,因而整个处理链条中的各个环节需要按照一定的先后依赖关系紧密衔接,即涉及到大量任务单元的管理调度,所以,项目中需要添加一个任务调度模块。

3.数据展现

数据展现的目的是将分析所得的数据进行可视化,以便运营决策人员能更方便地获取数据,更快更简单地理解数据。

目录
打赏
0
0
0
0
237
分享
相关文章
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
如何通过数据分析优化营销流程?
在当今竞争激烈的市场中,企业需构建高效的营销流程以整合资源、提升效率并实现业务增长。本文从目标设定、渠道选择、内容创作、数据分析及团队协作工具等方面详细探讨了如何优化营销流程,并指出了常见问题及改进方向。通过明确目标、精准选择渠道、创作高价值内容、用数据驱动决策以及提升团队协作效率,企业能够在激烈的市场竞争中脱颖而出,实现持续增长。
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
20 4
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
MySQL原理简介—2.InnoDB架构原理和执行流程
本文介绍了MySQL中更新语句的执行流程及其背后的机制,主要包括: 1. **更新语句的执行流程**:从SQL解析到执行器调用InnoDB存储引擎接口。 2. **Buffer Pool缓冲池**:缓存磁盘数据,减少磁盘I/O。 3. **Undo日志**:记录更新前的数据,支持事务回滚。 4. **Redo日志**:确保事务持久性,防止宕机导致的数据丢失。 5. **Binlog日志**:记录逻辑操作,用于数据恢复和主从复制。 6. **事务提交机制**:包括redo日志和binlog日志的刷盘策略,确保数据一致性。 7. **后台IO线程**:将内存中的脏数据异步刷入磁盘。
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
45 10
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
DeepSeekMoE是一种创新的大规模语言模型架构,融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm归一化。通过专家共享、动态路由和潜在变量缓存技术,DeepSeekMoE在保持性能的同时,将计算开销降低了40%,显著提升了训练和推理效率。该模型在语言建模、机器翻译和长文本处理等任务中表现出色,具备广泛的应用前景,特别是在计算资源受限的场景下。
332 29
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
278 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
社交软件红包技术解密(六):微信红包系统的存储层架构演进实践
微信红包本质是小额资金在用户帐户流转,有发、抢、拆三大步骤。在这个过程中对事务有高要求,所以订单最终要基于传统的RDBMS,这方面是它的强项,最终订单的存储使用互联网行业最通用的MySQL数据库。支持事务、成熟稳定,我们的团队在MySQL上有长期技术积累。但是传统数据库的扩展性有局限,需要通过架构解决。
65 18
一文分析架构思维之建模思维
软件里的要素不是凭空出现的,都是源于实际的业务。本文从软件设计本源到建模案例系统的介绍了作者对于建模的思维和思考。
建筑施工一体化信息管理平台源码,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
智慧工地云平台是专为建筑施工领域打造的一体化信息管理平台,利用大数据、云计算、物联网等技术,实现施工区域各系统数据汇总与可视化管理。平台涵盖人员、设备、物料、环境等关键因素的实时监控与数据分析,提供远程指挥、决策支持等功能,提升工作效率,促进产业信息化发展。系统由PC端、APP移动端及项目、监管、数据屏三大平台组成,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等