多线程学习之多线程的三种实现方式及应用

简介: 多线程学习之多线程的三种实现方式及应用

一、继承Thread类

1.1方法

方法名 说明
void run() 在线程开启后,此方法将被调用执行
void start() 使此线程开始执行,Java虚拟机会调用run方法()

run()方法和start()方法的区别:

  • run():封装线程执行的代码,直接调用,相当于普通方法的调用
  • start():启动线程;然后由JVM调用此线程的run()方法

1.2实现步骤

  • 定义一个类MyThread继承Thread类
  • 在MyThread类中重写run()方法
  • 创建MyThread类的对象
  • 启动线程

1.3代码实例

实现一个MyThread类继承Thread,然后重写里面的run()方法。至于说为什么需要重写run()方法是因为run()是用来封装被线程执行的代码

public class MyThread extends Thread{
    @Override
    public void run(){
        for(int i = 0; i <= 100 ; i++){
            System.out.println(i);
        }
    }
}
public class ThreadTest {
    public static void main(String[] args) {
        MyThread myThread1 = new MyThread();
        MyThread myThread2 = new MyThread();
        myThread1.run();
        myThread2.start();
    }
}

二、实现Runnable接口

2.1方法

方法名 说明
Thread(Runnable target) 分配一个新的Thread对象
Thread(Runnable target, String name) 分配一个新的Thread对象

2.2实现步骤

  • 定义一个类MyRunnable实现Runnable接口
  • 在MyRunnable类中重写run()方法
  • 创建MyRunnable类的对象
  • 创建Thread类的对象,把MyRunnable对象作为构造方法的参数
  • 启动线程

2.3代码实例

public class MyRunnable implements Runnable{
    @Override
    public void run() {
        for(int i=0; i<100; i++) {
            System.out.println(Thread.currentThread().getName()+":"+i);
        }
    }
}
public class RunnableTest {
    public static void main(String[] args) {
        MyRunnable myRunnable = new MyRunnable();
        //Thread thread = new Thread(myRunnable);
        Thread thread = new Thread(myRunnable, "fly");
        Thread thread1 = new Thread(myRunnable, "run");
        thread.start();;
        thread1.start();
    }
}

三、实现Callable接口

3.1方法

方法名 说明
V call() 计算结果,如果无法计算结果,则抛出一个异常
FutureTask(Callable<V> callable) 创建一个 FutureTask,一旦运行就执行给定的 Callable
V get() 如有必要,等待计算完成,然后获取其结果

3.2实现步骤

  • 定义一个类MyCallable实现Callable接口
  • 在MyCallable类中重写call()方法
  • 创建MyCallable类的对象
  • 创建Future的实现类FutureTask对象,把MyCallable对象作为构造方法的参数
  • 创建Thread类的对象,把FutureTask对象作为构造方法的参数
  • 启动线程
  • 再调用get方法,就可以获取线程结束之后的结果。

3.3代码实例

public class MyCallable implements Callable<String> {
    @Override
    public String call() throws Exception {
        for (int i = 0; i < 100; i++) {
            System.out.println(i);
        }
        //返回值就表示线程运行完毕之后的结果
        return "完成";
    }
}
public class CallableTest {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        MyCallable myCallable = new MyCallable();
//        Thread thread = new Thread(myCallable);
        FutureTask<String> stringFutureTask = new FutureTask<String>(myCallable);
        Thread thread = new Thread(stringFutureTask);
        String s = stringFutureTask.get();
        thread.start();
        System.out.println(s);
    }
}

三种线程的各自优缺点

  • 实现Runnable、Callable接口
  • 好处: 扩展性强,实现该接口的同时还可以继承其他的类
  • 缺点: 编程相对复杂,不能直接使用Thread类中的方法
  • 继承Thread类
  • 好处: 编程比较简单,可以直接使用Thread类中的方法
  • 缺点: 可以扩展性较差,不能再继承其他的类
  • Runnable接口和Callable接口区别
  • Callable的call()方法允许用try catch语句块内部处理也可以允许异常向上抛出,而Runnable方法的run()方法异常只能在内部处理。
  • Callable可以有返回结果而Runnable没有。

应用:

1.设置和获取线程名称

1.1方法

方法名 说明
void setName(String name) 将此线程的名称更改为等于参数name
String getName() 返回此线程的名称
Thread currentThread() 返回对当前正在执行的线程对象的引用

1.2代码示例

public class MyThread extends Thread{
    public MyThread(){}
    public MyThread(String name){
        super(name);
    }
    @Override
    public void run(){
        for(int i = 0; i <= 100 ; i++){
            System.out.println(getName() + ":" + i);
        }
    }
}
public class ThreadTest {
    public static void main(String[] args) {
        MyThread myThread1 = new MyThread();
        MyThread myThread2 = new MyThread();
        myThread1.setName("thread1");
        myThread2.setName("thread2");
        MyThread myThread3 = new MyThread("thread3");
        MyThread myThread4 = new MyThread("thread4");
        myThread1.start();
        myThread2.start();
        myThread3.start();
        myThread4.start();
        System.out.println(Thread.currentThread().getName());
    }
}

2.线程休眠

2.1方法

方法名 说明
static void sleep(long millis) 使当前正在执行的线程停留(暂停执行)指定的毫秒数

2.2代码示例

public class MyRunnable implements Runnable{
    @Override
    public void run() {
        for(int i=0; i<100; i++) {
            try{
                Thread.sleep(100);
            }catch (Exception e){
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+":"+i);
        }
    }
}
public class RunnableTest {
    public static void main(String[] args) {
        MyRunnable myRunnable = new MyRunnable();
        Thread thread1 = new Thread(myRunnable);
        Thread thread2 = new Thread(myRunnable);
        thread1.start();;
        thread2.start();
    }
}

 

3.线程优先级

3.1方法

方法名 说明
final int getPriority() 返回此线程的优先级
final void setPriority(int newPriority) 更改此线程的优先级线程默认优先级是5;线程优先级的范围是:1-10

3.2线程调度

  • 分时调度模型:所有线程轮流使用 CPU 的使用权,平均分配每个线程占用 CPU 的时间片
  • 抢占式调度模型:优先让优先级高的线程使用 CPU,如果线程的优先级相同,那么会随机选择一个,优先级高的线程获取的 CPU 时间片相对多一些

3.3代码示例

public class MyCallable implements Callable<String> {
    @Override
    public String call() throws Exception {
        for (int i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + "---" + i);
        }
        //返回值就表示线程运行完毕之后的结果
        return "完成";
    }
}
public class CallableTest {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        MyCallable myCallable = new MyCallable();
//        Thread thread = new Thread(myCallable);
        FutureTask<String> stringFutureTask = new FutureTask<String>(myCallable);
        Thread thread1 = new Thread(stringFutureTask);
        thread1.setName("thread1");
        thread1.setPriority(10);
        thread1.start();
        MyCallable myCallable2 = new MyCallable();
//        Thread thread = new Thread(myCallable);
        FutureTask<String> stringFutureTask2 = new FutureTask<String>(myCallable);
        Thread thread2 = new Thread(stringFutureTask2);
        thread2.setName("thread2");
        thread2.setPriority(1);
        thread2.start();
    }
}

4.守护线程

4.1方法

方法名 说明
void setDaemon(boolean on) 将此线程标记为守护线程,当运行的线程都是守护线程时,Java虚拟机将退出

4.2代码示例

public class MyThread1 extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println(getName() + "---" + i);
        }
    }
}
public class MyThread2 extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println(getName() + "---" + i);
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        MyThread1 t1 = new MyThread1();
        MyThread2 t2 = new MyThread2();
        t1.setName("女神");
        t2.setName("舔狗");
        //把第二个线程设置为守护线程
        //当普通线程执行完之后,那么守护线程也没有继续运行下去的必要了.
        t2.setDaemon(true);
        t1.start();
        t2.start();
    }
}

 

目录
相关文章
|
23天前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
91 6
|
22天前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
28 2
|
27天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
27天前
|
存储 监控 安全
深入理解ThreadLocal:线程局部变量的机制与应用
在Java的多线程编程中,`ThreadLocal`变量提供了一种线程安全的解决方案,允许每个线程拥有自己的变量副本,从而避免了线程间的数据竞争。本文将深入探讨`ThreadLocal`的工作原理、使用方法以及在实际开发中的应用场景。
52 2
|
1月前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
52 6
|
1月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
2月前
|
存储 并行计算 安全
C++多线程应用
【10月更文挑战第29天】C++ 中的多线程应用广泛,常见场景包括并行计算、网络编程中的并发服务器和图形用户界面(GUI)应用。通过多线程可以显著提升计算速度和响应能力。示例代码展示了如何使用 `pthread` 库创建和管理线程。注意事项包括数据同步与互斥、线程间通信和线程安全的类设计,以确保程序的正确性和稳定性。
|
2月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
24 2
|
1月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
62 0
|
1月前
|
Java 开发者
Java中的多线程基础与应用
【10月更文挑战第24天】在Java的世界中,多线程是提高效率和实现并发处理的关键。本文将深入浅出地介绍如何在Java中创建和管理多线程,以及如何通过同步机制确保数据的安全性。我们将一起探索线程生命周期的奥秘,并通过实例学习如何优化多线程的性能。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编程的大门。
24 0