多线程学习之多线程的三种实现方式及应用

简介: 多线程学习之多线程的三种实现方式及应用

一、继承Thread类

1.1方法

方法名 说明
void run() 在线程开启后,此方法将被调用执行
void start() 使此线程开始执行,Java虚拟机会调用run方法()

run()方法和start()方法的区别:

  • run():封装线程执行的代码,直接调用,相当于普通方法的调用
  • start():启动线程;然后由JVM调用此线程的run()方法

1.2实现步骤

  • 定义一个类MyThread继承Thread类
  • 在MyThread类中重写run()方法
  • 创建MyThread类的对象
  • 启动线程

1.3代码实例

实现一个MyThread类继承Thread,然后重写里面的run()方法。至于说为什么需要重写run()方法是因为run()是用来封装被线程执行的代码

public class MyThread extends Thread{
    @Override
    public void run(){
        for(int i = 0; i <= 100 ; i++){
            System.out.println(i);
        }
    }
}
public class ThreadTest {
    public static void main(String[] args) {
        MyThread myThread1 = new MyThread();
        MyThread myThread2 = new MyThread();
        myThread1.run();
        myThread2.start();
    }
}

二、实现Runnable接口

2.1方法

方法名 说明
Thread(Runnable target) 分配一个新的Thread对象
Thread(Runnable target, String name) 分配一个新的Thread对象

2.2实现步骤

  • 定义一个类MyRunnable实现Runnable接口
  • 在MyRunnable类中重写run()方法
  • 创建MyRunnable类的对象
  • 创建Thread类的对象,把MyRunnable对象作为构造方法的参数
  • 启动线程

2.3代码实例

public class MyRunnable implements Runnable{
    @Override
    public void run() {
        for(int i=0; i<100; i++) {
            System.out.println(Thread.currentThread().getName()+":"+i);
        }
    }
}
public class RunnableTest {
    public static void main(String[] args) {
        MyRunnable myRunnable = new MyRunnable();
        //Thread thread = new Thread(myRunnable);
        Thread thread = new Thread(myRunnable, "fly");
        Thread thread1 = new Thread(myRunnable, "run");
        thread.start();;
        thread1.start();
    }
}

三、实现Callable接口

3.1方法

方法名 说明
V call() 计算结果,如果无法计算结果,则抛出一个异常
FutureTask(Callable<V> callable) 创建一个 FutureTask,一旦运行就执行给定的 Callable
V get() 如有必要,等待计算完成,然后获取其结果

3.2实现步骤

  • 定义一个类MyCallable实现Callable接口
  • 在MyCallable类中重写call()方法
  • 创建MyCallable类的对象
  • 创建Future的实现类FutureTask对象,把MyCallable对象作为构造方法的参数
  • 创建Thread类的对象,把FutureTask对象作为构造方法的参数
  • 启动线程
  • 再调用get方法,就可以获取线程结束之后的结果。

3.3代码实例

public class MyCallable implements Callable<String> {
    @Override
    public String call() throws Exception {
        for (int i = 0; i < 100; i++) {
            System.out.println(i);
        }
        //返回值就表示线程运行完毕之后的结果
        return "完成";
    }
}
public class CallableTest {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        MyCallable myCallable = new MyCallable();
//        Thread thread = new Thread(myCallable);
        FutureTask<String> stringFutureTask = new FutureTask<String>(myCallable);
        Thread thread = new Thread(stringFutureTask);
        String s = stringFutureTask.get();
        thread.start();
        System.out.println(s);
    }
}

三种线程的各自优缺点

  • 实现Runnable、Callable接口
  • 好处: 扩展性强,实现该接口的同时还可以继承其他的类
  • 缺点: 编程相对复杂,不能直接使用Thread类中的方法
  • 继承Thread类
  • 好处: 编程比较简单,可以直接使用Thread类中的方法
  • 缺点: 可以扩展性较差,不能再继承其他的类
  • Runnable接口和Callable接口区别
  • Callable的call()方法允许用try catch语句块内部处理也可以允许异常向上抛出,而Runnable方法的run()方法异常只能在内部处理。
  • Callable可以有返回结果而Runnable没有。

应用:

1.设置和获取线程名称

1.1方法

方法名 说明
void setName(String name) 将此线程的名称更改为等于参数name
String getName() 返回此线程的名称
Thread currentThread() 返回对当前正在执行的线程对象的引用

1.2代码示例

public class MyThread extends Thread{
    public MyThread(){}
    public MyThread(String name){
        super(name);
    }
    @Override
    public void run(){
        for(int i = 0; i <= 100 ; i++){
            System.out.println(getName() + ":" + i);
        }
    }
}
public class ThreadTest {
    public static void main(String[] args) {
        MyThread myThread1 = new MyThread();
        MyThread myThread2 = new MyThread();
        myThread1.setName("thread1");
        myThread2.setName("thread2");
        MyThread myThread3 = new MyThread("thread3");
        MyThread myThread4 = new MyThread("thread4");
        myThread1.start();
        myThread2.start();
        myThread3.start();
        myThread4.start();
        System.out.println(Thread.currentThread().getName());
    }
}

2.线程休眠

2.1方法

方法名 说明
static void sleep(long millis) 使当前正在执行的线程停留(暂停执行)指定的毫秒数

2.2代码示例

public class MyRunnable implements Runnable{
    @Override
    public void run() {
        for(int i=0; i<100; i++) {
            try{
                Thread.sleep(100);
            }catch (Exception e){
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+":"+i);
        }
    }
}
public class RunnableTest {
    public static void main(String[] args) {
        MyRunnable myRunnable = new MyRunnable();
        Thread thread1 = new Thread(myRunnable);
        Thread thread2 = new Thread(myRunnable);
        thread1.start();;
        thread2.start();
    }
}

 

3.线程优先级

3.1方法

方法名 说明
final int getPriority() 返回此线程的优先级
final void setPriority(int newPriority) 更改此线程的优先级线程默认优先级是5;线程优先级的范围是:1-10

3.2线程调度

  • 分时调度模型:所有线程轮流使用 CPU 的使用权,平均分配每个线程占用 CPU 的时间片
  • 抢占式调度模型:优先让优先级高的线程使用 CPU,如果线程的优先级相同,那么会随机选择一个,优先级高的线程获取的 CPU 时间片相对多一些

3.3代码示例

public class MyCallable implements Callable<String> {
    @Override
    public String call() throws Exception {
        for (int i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + "---" + i);
        }
        //返回值就表示线程运行完毕之后的结果
        return "完成";
    }
}
public class CallableTest {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        MyCallable myCallable = new MyCallable();
//        Thread thread = new Thread(myCallable);
        FutureTask<String> stringFutureTask = new FutureTask<String>(myCallable);
        Thread thread1 = new Thread(stringFutureTask);
        thread1.setName("thread1");
        thread1.setPriority(10);
        thread1.start();
        MyCallable myCallable2 = new MyCallable();
//        Thread thread = new Thread(myCallable);
        FutureTask<String> stringFutureTask2 = new FutureTask<String>(myCallable);
        Thread thread2 = new Thread(stringFutureTask2);
        thread2.setName("thread2");
        thread2.setPriority(1);
        thread2.start();
    }
}

4.守护线程

4.1方法

方法名 说明
void setDaemon(boolean on) 将此线程标记为守护线程,当运行的线程都是守护线程时,Java虚拟机将退出

4.2代码示例

public class MyThread1 extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println(getName() + "---" + i);
        }
    }
}
public class MyThread2 extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println(getName() + "---" + i);
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        MyThread1 t1 = new MyThread1();
        MyThread2 t2 = new MyThread2();
        t1.setName("女神");
        t2.setName("舔狗");
        //把第二个线程设置为守护线程
        //当普通线程执行完之后,那么守护线程也没有继续运行下去的必要了.
        t2.setDaemon(true);
        t1.start();
        t2.start();
    }
}

 

目录
相关文章
|
21天前
|
存储 并行计算 安全
C++多线程应用
【10月更文挑战第29天】C++ 中的多线程应用广泛,常见场景包括并行计算、网络编程中的并发服务器和图形用户界面(GUI)应用。通过多线程可以显著提升计算速度和响应能力。示例代码展示了如何使用 `pthread` 库创建和管理线程。注意事项包括数据同步与互斥、线程间通信和线程安全的类设计,以确保程序的正确性和稳定性。
|
22天前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
16 3
|
22天前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
15 2
|
22天前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
28 2
|
18天前
|
Java 开发者
Java中的多线程基础与应用
【10月更文挑战第24天】在Java的世界中,多线程是提高效率和实现并发处理的关键。本文将深入浅出地介绍如何在Java中创建和管理多线程,以及如何通过同步机制确保数据的安全性。我们将一起探索线程生命周期的奥秘,并通过实例学习如何优化多线程的性能。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编程的大门。
16 0
|
1月前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
41 1
C++ 多线程之初识多线程
|
22天前
|
Java 开发者
Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点
【10月更文挑战第20天】Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点,重点解析为何实现Runnable接口更具灵活性、资源共享及易于管理的优势。
28 1
|
22天前
|
安全 Java 开发者
Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用
本文深入解析了Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用。通过示例代码展示了如何正确使用这些方法,并分享了最佳实践,帮助开发者避免常见陷阱,提高多线程程序的稳定性和效率。
33 1
|
22天前
|
Java
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件成立时被唤醒,从而有效解决数据一致性和同步问题。本文通过对比其他通信机制,展示了 `wait()` 和 `notify()` 的优势,并通过生产者-消费者模型的示例代码,详细说明了其使用方法和重要性。
24 1
|
1月前
|
存储 前端开发 C++
C++ 多线程之带返回值的线程处理函数
这篇文章介绍了在C++中使用`async`函数、`packaged_task`和`promise`三种方法来创建带返回值的线程处理函数。
45 6

相关实验场景

更多