基于人脸识别算法的考勤系统

简介: 基于人脸识别算法的考勤系统

作为一个基于人脸识别算法的考勤系统的设计与实现教程,以下内容将提供详细的步骤和代码示例。本教程将使用 Python 语言和 OpenCV 库进行实现。

一、环境配置

1. 安装 Python

请确保您已经安装了 Python 3.x。可以在[Python 官网](https://www.python.org/downloads/)下载并安装。

2. 安装所需库

命令提示符或终端中运行以下命令来安装所需的库:

pip install opencv-python
pip install opencv-contrib-python
pip install numpy
pip install face-recognition

二、创建数据集

1. 创建文件夹结构

在项目目录下创建如下文件夹结构:

attendance-system/
├── dataset/
│   ├── person1/
│   ├── person2/
│   └── ...
└── src/

将每个人的照片放入对应的文件夹中,例如:

attendance-system/
├── dataset/
│   ├── person1/
│   │   ├── 01.jpg
│   │   ├── 02.jpg
│   │   └── ...
│   ├── person2/
│   │   ├── 01.jpg
│   │   ├── 02.jpg
│   │   └── ...
│   └── ...
└── src/

三、实现人脸识别算法

在 `src` 文件夹下创建一个名为 `face_recognition.py` 的文件,并添加以下代码:

import os
import cv2
import face_recognition
import numpy as np
def load_images_from_folder(folder):
    images = []
    for filename in os.listdir(folder):
        img = cv2.imread(os.path.join(folder, filename))
        if img is not None:
            images.append(img)
    return images
def create_known_face_encodings(root_folder):
    known_face_encodings = []
    known_face_names = []
    for person_name in os.listdir(root_folder):
        person_folder = os.path.join(root_folder, person_name)
        images = load_images_from_folder(person_folder)
        for image in images:
            face_encoding = face_recognition.face_encodings(image)[0]
            known_face_encodings.append(face_encoding)
            known_face_names.append(person_name)
    return known_face_encodings, known_face_names
def recognize_faces_in_video(known_face_encodings, known_face_names):
    video_capture = cv2.VideoCapture(0)
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    while True:
        ret, frame = video_capture.read()
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
        rgb_small_frame = small_frame[:, :, ::-1]
        if process_this_frame:
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
            face_names = []
            for face_encoding in face_encodings:
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
                face_names.append(name)
        process_this_frame = not process_this_frame
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 0.8, (255, 255, 255), 1)
        cv2.imshow('Video', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    video_capture.release()
    cv2.destroyAllWindows()
if __name__ == "__main__":
    dataset_folder = "../dataset/"
    known_face_encodings, known_face_names = create_known_face_encodings(dataset_folder)
    recognize_faces_in_video(known_face_encodings, known_face_names)

四、实现考勤系统

在 `src` 文件夹下创建一个名为 `attendance.py` 的文件,并添加以下代码:

import os
import datetime
import csv
from face_recognition import create_known_face_encodings, recognize_faces_in_video
def save_attendance(name):
    attendance_file = "../attendance/attendance.csv"
    now = datetime.datetime.now()
    date_string = now.strftime("%Y-%m-%d")
    time_string = now.strftime("%H:%M:%S")
    if not os.path.exists(attendance_file):
        with open(attendance_file, "w", newline="") as csvfile:
            csv_writer = csv.writer(csvfile)
            csv_writer.writerow(["Name", "Date", "Time"])
    with open(attendance_file, "r+", newline="") as csvfile:
        csv_reader = csv.reader(csvfile)
        rows = [row for row in csv_reader]
        for row in rows:
            if row[0] == name and row[1] == date_string:
                return
        csv_writer = csv.writer(csvfile)
        csv_writer.writerow([name, date_string, time_string])
def custom_recognize_faces_in_video(known_face_encodings, known_face_names):
    video_capture = cv2.VideoCapture(0)
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    while True:
        ret, frame = video_capture.read()
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
        rgb_small_frame = small_frame[:, :, ::-1]
        if process_this_frame:
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
            face_names = []
            for face_encoding in face_encodings:
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
                    save_attendance(name)
                face_names.append(name)
        process_this_frame = not process_this_frame
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 0.8, (255, 255, 255), 1)
        cv2.imshow('Video', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    video_capture.release()
    cv2.destroyAllWindows()
if __name__ == "__main__":
    dataset_folder = "../dataset/"
    known_face_encodings, known_face_names = create_known_face_encodings(dataset_folder)
    custom_recognize_faces_in_video(known_face_encodings, known_face_names)

五、运行考勤系统

运行 `attendance.py` 文件,系统将开始识别并记录考勤信息。考勤记录将保存在 `attendance.csv` 文件中。

python src/attendance.py

现在,您的基于人脸识别的考勤系统已经实现。请注意,这是一个基本示例,您可能需要根据实际需求对其进行优化和扩展。例如,您可以考虑添加更多的人脸识别算法、考勤规则等。

目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
143 55
|
21天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
112 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
18天前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
32 6
【AI系统】QNNPack 算法
|
18天前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
43 5
【AI系统】Im2Col 算法
|
18天前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
30 2
【AI系统】Winograd 算法
|
1天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
33 5
|
8天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
37 3
|
23天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
34 8
|
1月前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
22天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
45 3

热门文章

最新文章