基于Googlenet深度学习网络的矿物质种类识别matlab仿真

简介: 基于Googlenet深度学习网络的矿物质种类识别matlab仿真

1.算法运行效果图预览

27d5e62b9d97bb5b6289db203318091a_82780907_202310302248140422582146_Expires=1698677894&Signature=W3we8l7HQTbNL%2Bu8UNiKrU0sDVg%3D&domain=8.jpg
36205498d08b8cb9a92d423dd38a4853_82780907_202310302248140391798340_Expires=1698677894&Signature=HX3euAs%2FNxxouVJpWhP5vODt9Wg%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
VGG在2014年由牛津大学著名研究组vGG (Visual Geometry Group)提出,斩获该年lmageNet竞赛中Localization Task (定位任务)第一名和 Classification Task (分类任务)第二名。Classification Task (分类任务)的第一名则是GoogleNet 。GoogleNet是Google研发的深度网络结构,之所以叫“GoogLeNet”,是为了向“LeNet”致敬.人员行为动作识别是计算机视觉和深度学习领域的重要应用之一。近年来,深度学习网络在人员行为动作识别中取得了显著的成果。

  1. 原理
    1.1 深度学习与卷积神经网络(CNN)
    深度学习是一种机器学习技术,它通过构建多层神经网络来模拟人脑的神经元之间的连接,实现对数据的学习和特征提取。卷积神经网络(CNN)是深度学习中的一种重要结构,特别适用于图像识别任务。它通过卷积层、池化层和全连接层来逐层提取和学习图像的特征。
    

1.2 GoogLeNet
GoogLeNet 是一个深度卷积神经网络,由 Google 在 2014 年提出。它通过引入 Inception 模块来解决深层网络中参数过多和计算量大的问题。Inception 模块使用不同大小的卷积核和池化操作并行提取特征,然后将它们拼接在一起,从而获得更丰富的特征表示。

GoogLenet网络亮点
1.引入了Inception结构(融合不同尺度的特征信息)
2.使用1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃全连接层,使用平均池化层(大大减少模型参数)
b2435c62ccc4eeedfeb5882650669ab5_82780907_202310302249350251195273_Expires=1698677975&Signature=7Y05lqj0kDLEAtJfEOj8LyBPAMw%3D&domain=8.jpg

  1. 实现过程
    2.1 数据预处理
    在矿石种类识别任务中,首先需要准备标注好的数据集,包含不同行为动作的图像或视频帧。然后,将图像进行预处理,包括图像尺寸调整、归一化等操作,以便输入到深度学习网络中。

2.2 构建网络模型
GoogLeNet 模型可以通过深度学习框架如 TensorFlow 或 PyTorch 构建。模型的基本结构包括卷积层、池化层、Inception 模块和全连接层。可以根据具体任务进行网络的修改和定制。

2.3 数据输入与训练
将预处理后的图像作为输入,通过前向传播得到网络的输出。然后,通过与标签进行比较,计算损失函数并进行反向传播,更新网络的权重参数。通过多次迭代训练,使得网络逐渐学习到特征并提高识别能力。

2.4 模型评估与调优
在训练过程中,需要将数据集划分为训练集、验证集和测试集。通过验证集监控模型的性能,并根据验证集的表现进行模型的调优。在测试集上进行评估,得到模型在未见过数据上的识别准确率.

4.部分核心程序

```Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的全连接特征学习器层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...
'Name', 'Coal Feature Learner', ...
'WeightLearnRateFactor', 10, ...
'BiasLearnRateFactor', 10);
% 创建新的分类器层
New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 构建网络图
Network_Architecture = layerGraph(net);
% 替换网络中的特征学习器和分类器层
New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);
% 分析并显示新网络结构
analyzeNetwork(New_Network)
% 设置训练选项
maxEpochs = 20;
Minibatch_Size = 8;
Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);
Training_Options = trainingOptions('sgdm', ...
'MiniBatchSize', Minibatch_Size, ...
'MaxEpochs', maxEpochs, ...
'InitialLearnRate', 1e-3, ...
'Shuffle', 'every-epoch', ...
'ValidationData', Resized_Validation_Dataset, ...
'ValidationFrequency', Validation_Frequency, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 使用训练选项对网络进行训练
net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);
% 保存训练好的网络模型
save gnet.mat

```

相关文章
|
15小时前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的火焰烟雾检测系统matlab仿真
基于yolov2深度学习网络的火焰烟雾检测系统matlab仿真
|
15小时前
|
传感器 算法 Go
基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真
基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真
|
1天前
|
资源调度 算法
m基于OFDM+QPSK和LDPC编译码以及LS信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
m基于OFDM+QPSK和LDPC编译码以及LS信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
8 2
|
1天前
|
机器学习/深度学习 算法 数据可视化
基于深度学习的红肉新鲜过期判决系统matlab仿真
基于深度学习的红肉新鲜过期判决系统matlab仿真
|
1天前
|
机器学习/深度学习 算法
基于CNN-GRU-Attention的时间序列回归预测matlab仿真
基于CNN-GRU-Attention的时间序列回归预测matlab仿真
|
3天前
|
机器学习/深度学习 算法 计算机视觉
m基于深度学习网络的性别识别系统matlab仿真,带GUI界面
m基于深度学习网络的性别识别系统matlab仿真,带GUI界面
13 2
|
3天前
|
机器学习/深度学习 算法 数据库
基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
|
3天前
|
机器学习/深度学习 算法
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真
|
5天前
|
机器学习/深度学习 算法 数据挖掘
【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法
27 2
|
5天前
|
机器学习/深度学习 算法 数据挖掘
【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法
22 2

热门文章

最新文章

相关产品